• Title/Summary/Keyword: Wearable Sensors

Search Result 288, Processing Time 0.03 seconds

Emergency Support System using Smart Device (스마트 기기를 활용한 응급 지원 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1791-1798
    • /
    • 2016
  • Recently, research about ESS(Emergency Support System) has been actively carried out to provide a variety of medical services using smart devices and wearable devices. Smart healthcare provides a personalized health care service using various types of bio-signal measuring sensors and smart devices. For the smart healthcare using a smart device, it is need to research about personal health monitoring using a smart wearable devices, and also need to research on service methods for first aid measures after an emergency. In this paper, we proposed about group management based emergency support system, that is monitoring about personal bio signal using smart devices and wearable devices to protect patient's life. The system notices to the medical volunteers based on the position information when an emergency situation. In addition, we have designed and implemented an emergency support system providing the information of the patient on the display when transmitting a picture of a patient using a smart device to the server.

Mobile Healthcare System Based on Bluetooth Medical Device

  • Kim, Jeong-Heon;Lee, Seung-Chul;Lee, Boon-Giin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.241-248
    • /
    • 2012
  • Recently healthcare industry such as pharmaceutical, medical device and healthcare service technology is growing significantly. Mobile healthcare has attracted big attention due to IT convergence technology. Paradigm of healthcare has been changed from the 1st generation(communicable disease prevention) and the 2nd generation(treatment of disease due to extended life expectancy) to the 3rd generation(extended life expectancy due to prevention and control). In our study, we suggest the 3rd generation mobile healthcare system using Bluetooth based wearable ECG monitoring system and smart phone technology. The mobile healthcare system consists of wearable shirts with Bluetooth communication module, ECG sensor, battery, and mobile phone. The ECG data is obtained by a miniaturized sensor and the data is transferred to a mobile phone using Bluetooth communication. Then, user can monitor his/her own ECG signal on an application using Android in mobile phone. The Bluetooth communication device is used due to highly reliable data transmission property and the Bluetooth chip is embedded in every mobile phone. The wearable shirts with chest belt of Bluetooth ECG module is designed with a focus on convenience in the daily life of a wearer. The ECG signal evaluation software in Android based mobile phone is developed for the health check and the ECG signal variation is tested according to the activities of the wearer such as walking, climbing stairs, stand up and sit down, and so on.

Development of Wearable Body Weight Support System to Reduce Muscle Activity in Various Upright Tasks (다양한 직립 작업의 근육 활성도 경감을 위한 착용형 체중지지 시스템 개발)

  • Kim, Hwang-Guen;Pyo, Sang-Hun;Lee, Ho-Su;Yoon, Jung-Won
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.132-143
    • /
    • 2017
  • While working in an industrial environment which requires extended periods of upright posture; workers tend to develop muscle fatigue due to the constant load on lower-limb muscles. In addition, when working while bending knees; muscle fatigue of lower back and hamstrings is increased due to the abnormal posture. This can lead to damage of muscles, induce musculoskeletal disorders, and reduce long-term working efficiency. Recent medical studies have shown that long-term working in an upright posture can induce musculoskeletal disorders such as foot fatigue, edema, pain and varicose veins. Likewise, medical and rehabilitation expenses have grown due to the increase in musculoskeletal conditions suffered by workers. For this problem, we aim to develop a device that can reduce the physical fatigue on the lower limbs by supporting the weight of workers during the extended periods of upright and bending postures in the industrial environments. In this paper, we have designed and manufactured a wearable weight support system; with a user intention algorithm that the users can maintain various postures. For validation of the developed system, we measured the muscle activity of the users wearing the system with EMG sensors.

Noise Reduction in Real-time Context Aware using Wearable Device (웨어러블 기기를 이용한 실시간 상황인식에서의 잡음제거)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1803-1810
    • /
    • 2018
  • Recently, many researches related to IoT (Internet of Things) have been actively conducted. In order to improve the context aware function of smart wearable devices using the IoT, we proposed a noise reduction method for the event data of the sensor part. In thisstudy, the adoption of the low - pass filter induces the attenuation of the abnormally measured value, and the benefit was obtained from the situation recognition using the event data of the sensor. As a result, we have validated attenuation for abnormal or excessive noise using event data detected and reported by 3-axis acceleration sensors on some devices, such as smartphones and smart watches. In addition, various pattern data necessary for real - time context aware were obtained through noise pattern analysis.

Research trends on prevention of heat stroke using clothing: Focusing on practical research in Japan (의복을 활용한 열중증 예방 대책에 관한 연구 동향 조사: 일본의 실용 지향적 연구를 중심으로)

  • Son, Su-Young
    • Human Ecology Research
    • /
    • v.56 no.5
    • /
    • pp.473-491
    • /
    • 2018
  • This study identifies Japanese study content on heat stroke prevention measures using clothes, provides basic data for quantitative wearing assessment studies, presents a developmental direction for those, and helps invigorate further research. Studies were collected concerning clothing-based heat stroke measures in order to analyze the following factors: current status of heat stroke by industry and working environment, heat stroke and body cooling method, clothing microclimate and air circulation in a hot environment, hot environments and wearable sensors, and heat stress reduction and skin exposure. The current WBGT standard does not consider the diversity of wearing clothes according to the working environment. Therefore, it is preferable to add a correction value in consideration of design, materials, and ventilation to prevent heat strokes. For the heat stroke and body cooling method, wearing water-perfused clothing is effective to reduce heat stress and maintain exercise ability. Changing the material and design of clothing or wearing air-conditioned clothing can improve ventilation and the clothing microclimate. However, further evaluation is needed on the effectiveness of air-conditioned clothing as a heat stroke prevention product. The measurement method using a wearable sensor can provide real-time data on the body response due to working in a hot environment. Therefore, it is an effective alarm for heat stroke. Skin exposure area and heat dissipation efficiency should be considered to prevent heat stroke. Reducing the covering area by exposing the head, neck, and limbs, and wearing breathable material can prevent heat stroke from increased body temperature.

Design of FPGA-based Wearable System for Checking Patients (환자 체크를 위한 FPGA 기반 웨어러블 시스템 설계)

  • Kang, Sungwoo;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.477-479
    • /
    • 2017
  • With the recent advances in medical technology and health care, the prevention and treatment of diseases has developed. Accordingly aging has rapidly progressed. In this life span and aging society, demand for diagnostic centered medical care is increasing rapidly. In this paper, we propose a wearable patient check system based on FPGA that can be controlled by sensors. In the existing hospital, a doctor or nurse visited the patient every hour to check the condition. However, in this paper, patients, doctors and nurses can check the patient's condition at the desired time using patient check system. In addition, the tilt sensor is used for the patient who is uncomfortable to easily control. The proposed FPGA-based hardware architecture consists of an algorithm for enlarged image processing, a TFT-LCD Controller, a CIS Controller, and a Memory Controller to output the patient's status image. Implemented and validated using the DE2-115 test board with Cyclone IV EP4CE115F29C7 FPGA device and its operating frequency is 50MHz.

  • PDF

Blood Pressure Estimation for Development of Wearable small Blood Pressure Monitor Fusion Algorithm Analysis (웨어러블 초소형 혈압계 개발을 위한 혈압 추정 융합 알고리즘 분석)

  • Kim, Seon-Chil;Kwon, Chan-Hoe;Park, You-rim
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.209-215
    • /
    • 2019
  • The most important personal health care in digital health care is a very important issue mainly for chronic diseases. Therefore, it is important to develop a simple wearable device for real-time health management. Existing blood pressure estimation wearable devices use PPG characteristics to analyze PTT and propose blood pressure estimation algorithms. However, the influencing factors of the algorithm such as the reproducibility of PPG, whether to apply various PTTs, and variables generated from the physical differences of the measurers are actually very complex. Therefore, in this study, the correlation between PTT, SBP, and DBP was analyzed, and it was designed to use PPG sensors for device miniaturization. The blood pressure estimation algorithm took into account differences in PPG, heart rate, and personal variables.

Wearable Force Sensor Using 3D-printed Mold and Liquid Metal (삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발)

  • Kim, Kyuyoung;Choi, Jungrak;Jeong, Yongrok;Kim, Minseong;Kim, Seunghwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.

Wearable Magnetic Sensor Device Using Wireless Sensor Network (무선센서 네트워크를 이용한 웨어러블 자기장 센서 장치)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.294-298
    • /
    • 2021
  • Recently, many electronic devices have been integrated with various kinds of wireless sensor network technologies that have been enabled with wireless network connections. These wireless sensor network devices have adopted various kinds of wireless network technologies. On the other hand, because each wireless network technology has its advantages and disadvantages, the target and purposes should be considered carefully at the beginning of the development. In particular, the approach to the magnetic sensor should be considered carefully because it has its own characteristic compared to general sensors. The magnetic field generates nonlinear data. This paper introduces the design aspects to reflect low cost and wearable devices to use in a wireless sensor network. In addition, this paper addresses how to select proper sensor network technology. As a result, wireless sensor network devices were integrated using Zigbee and showed the performance of the throughput.

Development of Textile Sensors for Prevention of Forward Head Posture (거북목 예방을 위한 텍스타일 센서 개발)

  • Minsuk kim;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.125-140
    • /
    • 2023
  • This study aimed to develop a smart wearable device for assessing the risk angle associated with turtle neck syndrome in patients with Video Display Terminal (VDT) syndrome. Turtle neck syndrome, characterized by forward head posture resulting from upper cross syndrome, leads to thoracic kyphosis. In this research, a stretch sensor was used to monitor the progression of turtle neck syndrome, and the sensor data was analyzed using a Universal Testing Machine (UTM) and the Gauge Factor (GF) calculation method. The scapula and cervical spine angles were measured at five stages, with 15-degree increments from 0° to 60°. During the experimental process, the stretch sensor was attached to the thoracic spine in three different lengths: 30mm, 50mm, and 100mm. Among these, the attachment method yielding the most reliable data was determined by measuring with three techniques (General Trim Adhesive, PU film, and Heat Transfer Machine), and clothing using the heat transfer machine was selected. The experimental results confirmed that the most significant change in thoracic kyphosis occurred at approximately 30° of forward head posture. Prolonged deformity can lead to various issues, highlighting the need for textile sensor solutions. The developed wearable device aims to provide users with real-time feedback on their turtle neck posture and incorporate features that can help prevent or improve the condition.