• Title/Summary/Keyword: Wearable PC

Search Result 60, Processing Time 0.028 seconds

Design and Analysis of T2S System Implementation (T2S(Text-To-Speech) 시스템 구축을 위한 분석 및 설계)

  • Kim, Jung-Hyung;Lee, Wang-Hun;Lee, Hyun-Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.713-716
    • /
    • 2006
  • IT 정보 기술 발달로 관련 하드웨어와 스프트웨어의 보급이 일반화 되며, 그에 따라 신체적 장애를 겪고 있는 사람들에게 IT기술을 이용하여 신체적 결함을 극복할 수 있는 정보통신 응용제품은 필수적이다. 특히, 고령화 사회로 접어들면서 신체적 기능저하들 중에서 시각 기능 저하도 대표적인 부분이다. 이러한 시각장애를 겪고 있는 사람들을 위한 정보전달 수단으로 점자책등이 존재한다. 그러나 일반 서적에 비하면 이용 및 활용을 위한 제반 기술이 상당히 부족한 현실이다. 이에 본 연구에서는 시각 장애를 겪는 사람 및 장애자들에게 일반 책을 읽을 수 있도록 오픈 소스 기반에 소형 스캐너를 부착한 웨어러블(wearable) PC를 직접 제작하여 개발 완료시점에 있는 시스템 내용에 관한 분석 및 설계에 관한 내용이다. 이를 위해 본 연구에서 일반 스캐너 내부 구성을 살펴보면, 책 혹은 정자로 주어진 문서를 실시간으로 스캔닝을 통해서 글자를 추출하고, 추출된 글자를 음성으로 들려주는 휴대용 통합시스템(T25:text-to-speech)의 개발 진행된 연구에 관하여 살펴본다.

  • PDF

Multi-channel Unconstrained Heart Rate Monitoring System for Exercising Rehabilitation Patients (재활 훈련중인 환자를 위한 다채널 무구속 심박동수 모니터링 시스템)

  • Cho, J.M.;Choi, J.H.;Park, J.H.;Nam, T.W.;Eun, J.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This research focused on the development of wireless telemetry system that can monitor heart rates of multiple rehabilitation patients in real time without constraint. The whole system consists of the multiple patient's side devices (PSDs) and one central monitoring system (CMS). The PSD consists of a microphone, amplifier, filter, microcontroller, and RF (Radio Frequency) modem. In addition, the PSD was designed to be wearable and low power consumption. The CMS consists of an RF modem and general PC and it was designed to monitor heart rates from multiple patients simultaneously. The system warns an alarm signal when a patient's heart rate exceeds the pre-set range for each patient. This system can be useful to monitor the heart rate of exercising rehabilitation patients and control the patients condition and the exercising level.

Digital Leveraging: The Methodology of Applying Technology to Human Life (디지털 레버리징: 기술을 인간의 삶에 적용하는 방법론)

  • Han, Sukyoung;Kim, Hee-Cheol;Hwang, Wonjoo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.322-333
    • /
    • 2019
  • After the launch of smart phones, various miniaturized smart devices such as wearable and IOT devices have deeply embedded in human life, and have created a technology-oriented society. In this technology-oriented society, technology development itself is important, however it seems more important to utilize existing technology appropriately and deliver effectively to human life. As the computer became personalized after the appearance of PC, human-centered computing such as HCI and UCD had begun to appear. However, most of the researches focused on technology that made human being convenient to interact with computer such as computer systems design and UX development. In the technology-oriented society, it seems more urgent to apply existing technology to human life. In this paper, we propose a methodology, 'Digital Leveraging' which guides how to effectively apply technology to human life. Digital Leveraging is the way of convergence between technology and humanities.

BIOFIT - Smart, Portable, Wearable and Wireless Digital Exercise Trainer Device with Biofeedback Capability

  • Diwakar Praveen Kumar;Oh Young-Keun;Chung Gyo-Bum;Park Seung-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.36-45
    • /
    • 2007
  • Today Human Personal Trainers are becoming very famous in this health conscious world. They teach user to achieve fitness goals in managed way. Due to their high fee and tight schedule they are unavailable to mass number of people. Another solution to this problem is to develop digital personal trainer portable instrument that may replace human personal trainers. We developed a portable digital exercise trainer device - BIOFIT that manages, monitors and records the user's physical status and workout during exercise session. It guides the user to exercise efficiently for specific fitness goal. It keeps the full exercise program i.e. exercises start date and time, duration, mode, control parameter, intensity in its memory which helps the user in managing his exercise. Exercise program can be downloaded from the internet. During exercise it continuously monitors the user's physiological parameters: heart rate, number of steps walked, and energy consumed. If these parameters do not range within prescribed target zone, the BIOFIT will alarm the user as a feedback to control exercise. The BIOFIT displays these parameters on graphic LCD. During exercise it continuously records the heart rate and number of steps walked every 10 seconds along with exercise date and time. This stored information can be used as treatment for the user by an exercise expert. Real-time ECG monitoring can be viewed wirelessly (RF Communication) on a remote PC.

Neural network design for Ambulatory monitoring of elderly

  • Sharma, Annapurna;Lee, Hun-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.265-269
    • /
    • 2008
  • Home health care with compact wearable units sounds to be a convenient solution for the elderly people living independently. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring enables them to get an emergency help in the case of the fatal fall event and can provide their general health status by observing the activities being performed in daily life. A tri-axial accelerometer sensor is used to get the acceleration anomalies associated with the user's movements. The three axis acceleration data are transferred to the base station sensor node via an IEEE 802.15.4 compliant zigbee module. The base station sensor node sends the data to base station PC for an offline processing. This work shows the feature set preparation using the principal component analysis (PCA) for the designing of neural network. The work includes the most common activities of daily living (ADL) like Rest, Walk and Run along with the detection of fall events from ADL. The angle from the vertical is found to be the most significant feature parameter for classification of fall while mean, standard deviation and FFT coefficients were used as the feature parameter for classifying the other activities under consideration. The accuracy for detection of fall events is 86%. The overall accuracy for ADL and fall is 94%.

  • PDF

Multi-Modal Instruction Recognition System using Speech and Gesture (음성 및 제스처를 이용한 멀티 모달 명령어 인식 시스템)

  • Kim, Jung-Hyun;Rho, Yong-Wan;Kwon, Hyung-Joon;Hong, Kwang-Seok
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2006.06a
    • /
    • pp.57-62
    • /
    • 2006
  • 휴대용 단말기의 소형화 및 지능화와 더불어 차세대 PC 기반의 유비쿼터스 컴퓨팅에 대한 관심이 높아짐에 따라 최근에는 펜이나 음성 입력 멀티미디어 등 여러 가지 대화 모드를 구비한 멀티 모달 상호작용 (Multi-Modal Interaction MMI)에 대한 연구가 활발히 진행되고 있다. 따라서, 본 논문에서는 잡음 환경에서의 명확한 의사 전달 및 휴대용 단말기에서의 음성-제스처 통합 인식을 위한 인터페이스의 연구를 목적으로 Voice-XML과 Wearable Personal Station(WPS) 기반의 음성 및 내장형 수화 인식기를 통합한 멀티 모달 명령어 인식 시스템 (Multi-Modal Instruction Recognition System : MMIRS)을 제안하고 구현한다. 제안되어진 MMIRS는 한국 표준 수화 (The Korean Standard Sign Language : KSSL)에 상응하는 문장 및 단어 단위의 명령어 인식 모델에 대하여 음성뿐만 아니라 화자의 수화제스처 명령어를 함께 인식하고 사용함에 따라 잡음 환경에서도 규정된 명령어 모델에 대한 인식 성능의 향상을 기대할 수 있다. MMIRS의 인식 성능을 평가하기 위하여, 15인의 피험자가 62개의 문장형 인식 모델과 104개의 단어인식 모델에 대하여 음성과 수화 제스처를 연속적으로 표현하고, 이를 인식함에 있어 개별 명령어 인식기 및 MMIRS의 평균 인식율을 비교하고 분석하였으며 MMIRS는 문장형 명령어 인식모델에 대하여 잡음환경에서는 93.45%, 비잡음환경에서는 95.26%의 평균 인식율을 나타내었다.

  • PDF

A study on the change of material width by forging processing in fine pitch connector of C5210-H(HP) and NKT322-EH materials (C5210-H(HP)와 NKT322-EH 소재의 협피치 커텍터에서 단조 가공에 의한 소재 폭 변화에 관한 연구)

  • Shin, Mi-Kyung;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.17-22
    • /
    • 2020
  • As devices such as smartphones, tablet PC, and wearable devices have been miniaturized, the connectors that go into the devices are also designed to be very small. The connector combines the plug and the receptacle to transfer electricity. As devices are miniaturized, the contact shape is formed by partially thinning the thickness of the raw material of the terminal in order to lower the coupling height of the plug and receptacle. The product used in this study is a receptacle terminal used for 0.4mm pitch board to board connector among fine pitch connectors. When the material thickness is reduced by forging the receptacle terminal, the width change of the pin is checked. To reduce the thickness of the material by forging, pre-notching is applied in the first step, forging in the second step, and notching in the third step. After forming the width dimension of the pin to 0.28 mm in the pre-notching process, in the forging process, the material thickness 0.08 mm and 0.02 mm (25%) were forged and the thickness was changed to 0.06 mm and the width change amount of the pin was measured. The facility produced 10,000 pieces at 400 SPM using a Yamada Dobby (MXM-40L) press, and thirty pins were measured and the average value was shown. After forging by using C5210-H (HP) and NKT322-EH, which are frequently used in connectors, analyze the amount of change in each material. The effect of punching oil on forging is investigated by appling FM-200M, which is highly viscous, and FL-212, fast drying oil. This study aims to minimize mold modification by predicting the amount of material change after forging.

Real-time Intelligent Health and Attention Monitoring System for Car Driver (실시간 지능형 운전자 건강 및 주의 모니터링 시스템)

  • Shin, Heung-Sub;Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1303-1310
    • /
    • 2010
  • Recently, researches related with automative mechanism have been widely studied to increase the driver's safety by continuously monitoring the driver's health condition to prevent driver's drowsiness. This paper describes the design of wearable chest belt for ECG and reflectance pulse oximetry for SpO2 sensors based on wireless sensor network to monitor the driver's healthcare status. ECG, SpO2 and heart rate signals can be transmitted via wireless sensor node to base station connected to the server. Intelligent monitoring system is designed at the server to analyze the SpO2 and ECG signals. HRV (Heart Rate Variability) signals can be obtained by processing the ECG and PPG signals. HRV signals are further analyzed based on time and frequency domain to determine the driver's drowsiness status.

Real-time Intelligent Health and Attention Monitoring System for Car Driver by Measurement of Vital Signal (생체신호 측정에 의한 실시간 지능형 운전자 건강 및 주의 모니터링 시스템)

  • Shin, Heung-Sub;Jung, Sang-Joong;Seo, Yong-Su;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.545-548
    • /
    • 2009
  • Recently, researches related to automative mechanism have been widely studied to increase the driver's safety by continuously monitoring the driver's health condition to prevent driver's drowsiness. This paper describes the design of wearable chest belt for ECG and reflectance pulse oximetry for $SpO_2$ sensors based on wireless sensor network to monitor the driver's healthcare status. ECG, $SpO_2$ and heart rate signals can be transmitted via wireless sensor node to base station connected to the server. Intelligent monitoring system is designed at the server to analyze the $SpO_2$ and ECG signals. HRV(Heart Rate Variability) signals can be obtained by processing the ECG and PPG signals. HRV signals are further analyzed based on time and frequency domain to determine the driver's drowsiness status.

  • PDF

Low-Gate-Count 32-Bit 2/3-Stage Pipelined Processor Design (소면적 32-bit 2/3단 파이프라인 프로세서 설계)

  • Lee, Kwang-Min;Park, Sungkyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • With the enhancement of built-in communication capabilities in various meters and wearable devices, which implies Internet of things (IoT), the demand of small-area embedded processors has increased. In this paper, we introduce a small-area 32-bit pipelined processor, Juno, which is available in the field of IoT. Juno is an EISC (Extendable Instruction Set Computer) machine and has a 2/3-stage pipeline structure to reduce the data dependency of the pipeline. It has a simple pipeline controller which only controls the program counter (PC) and two pipeline registers. It offers $32{\times}32=64$ multiplication, 64/32=32 division, $32{\times}32+64=64$ MAC (multiply and accumulate) operations together with 32*32=64 Galois field multiplication operation for encryption processing in wireless communications. It provides selective inclusion of these algebraic logic blocks if necessary in order to reduce the area of the overall processor. In this case, the gate count of our integer core amounts to 12k~22k and has a performance of 0.57 DMIPS/MHz and 1.024 Coremark/MHz.