• Title/Summary/Keyword: Wearable Device Utilization Strategies

Search Result 1, Processing Time 0.013 seconds

A Study on Dementia Prediction Models and Commercial Utilization Strategies Using Machine Learning Techniques: Based on Sleep and Activity Data from Wearable Devices (머신러닝 기법을 활용한 치매 예측 모델과 상업적 활용 전략: 웨어러블 기기의 수면 및 활동 데이터를 기반으로)

  • Youngeun Jo;Jongpil Yu;Joongan Kim
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.137-153
    • /
    • 2024
  • This study aimed to propose early diagnosis and management of dementia, which is increasing in aging societies, and suggest commercial utilization strategies by leveraging digital healthcare technologies, particularly lifelog data collected from wearable devices. By introducing new approaches to dementia prevention and management, this study sought to contribute to the field of dementia prediction and prevention. The research utilized 12,184 pieces of lifelog information (sleep and activity data) and dementia diagnosis data collected from 174 individuals aged between 60 and 80, based on medical pathological diagnoses. During the research process, a multidimensional dataset including sleep and activity data was standardized, and various machine learning algorithms were analyzed, with the random forest model showing the highest ROC-AUC score, indicating superior performance. Furthermore, an ablation test was conducted to evaluate the impact of excluding variables related to sleep and activity on the model's predictive power, confirming that regular sleep and activity have a significant influence on dementia prevention. Lastly, by exploring the potential for commercial utilization strategies of the developed model, the study proposed new directions for the commercial spread of dementia prevention systems.