• Title/Summary/Keyword: Wear stress

Search Result 422, Processing Time 0.022 seconds

Study on the Wear Characteristics of Gray Cast Iron under Dry Rolling Condition (건식조건하(乾式條件下)에서 회주철(灰鑄鐵)의 로링마모(磨耗)에 관(關)한 연구(硏究))

  • Choi, Chang-Ock;Kim, Dong-Yun
    • Journal of Korea Foundry Society
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1983
  • This study has been carried out to investigate into the difference of rolling life and rolling wear characteristics for various gray cast iron under unlubricated dry rolling condition by amsler type wear test with 9.09% sliding.The results obtained from this study are summerized as follows: 1) It has been found that the amount of rolling wear id decreased when tensile strength and hardness are low, and then the rolling life up to generation of abnormal wear is conspicuously increased. 2) At the given condition the amount of rolling wear has been found to decrease as carbon equivalent of gray cast iron increases and resistance of crack propagation is an important factor on improvement of wear characteristics. 3) The amount of rolling wear is increased with increasing rolling revolution and wear of gray cast iron under dry rolling condition is characterized by three modes; initial wear, stationary wear and abnormal wear. 4) It has been found that the amount of rolling wear is increased with increasing maximum compressive stress and extremely increased when maximum compressive stress is over 59.1kg.f/mm.

  • PDF

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

Analysis of Wear Proccess in Sliding Contact by X-ray Diffraction (X선회절에 의한 미끄럼접촉시 발생하는 마모과정의 해석(제1보 : 저경도강의 적용))

  • 이한영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.19-24
    • /
    • 1999
  • Understanding of wear mode and prediction of wear rate of parts in sliding contact are very important in field of meterial design relating with wear resistant. This paper has been undertaken to analyze the possibility of elucidation of wear mode and prediction of wear rate for annealed steel in sliding contact using the X-ray diffraction. The sliding wear test with various velocities using pin-on-disc machine and the X-ray diffraction test on the worn surface have been carried out. The results have been shown that the magnitude of residual stress and half-value breadth on the worn surface have a good correlation with wear mode. The difference between before and after test of half-value breadth on worn surface has been shown to be exponential relation with wear rate in the same wear mode.

  • PDF

The Effect of Fretting Wear on Fatigue Life of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로수명에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1083-1092
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile caused by fretting wear on fatigue life of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact profiles of shaft. The fatigue lives of the press-fitted shaft reflecting the evolution of contact stress induced by fretting wear were evaluated by stress-life approach using fatigue notch factor. It is found that the stress concentration of contact edge in press-fitted shaft decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside with increasing number of fatigue cycles. Thus the change of crack nucleation position in press-fitted shaft is mainly caused by the stress change of contact edge due to the evolution of contact surface profile by fretting wear. Furthermore, the estimated fatigue lives by stress-life approach at the end of running-in period of the fretting wear process corresponded well to the experimental results. It is thus suggested that the effect of fretting wear on fatigue life in press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

High Temperature Wear Behavior of Plasma-Sprayed Zirconia-Alumina Composite Coatings (플라즈마 용사된 알루미나-지르코니아 복합체의 고온 마모.마찰 거동)

  • 김장엽;임대순;안효석
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.33-38
    • /
    • 1996
  • High temperature wear behaviors of plasma-sprayed ZrO$_{2}$-$Y_{2}O_{3}$ composite coatings were investigated for high temperature wear resistance applications. The composite powders containing 20, 50, 80 vol% of alumina for plasma spray were made by spray drying method. Wear tests with composite coated specimens were performed at temperature ranges from room temperature to 800$^{\circ}$C. Wear tests were also carried out with heat treated specimens at room temperature. The microstructural change of coatings and the worn surface were examined by SEM and XRD. Sharp increase of wear loss at high temperature wear test was observed in specimens containing 50 and 80 vol% alumina. Similar trend was observed in the heat treated coatings. The measured residual stress was increased with increased alumina contents and heat treating temperatures. Residual stress induced during heat treatment appeared to be responsible to the observed harmful effect of alumina additions on the high temperature wear.

Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface (시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석)

  • Park, Tae-Jo;Yoo, Jae-Chan;Jo, Hyeon-Dong
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

A Study on the Relationship between Residual Stress and Wear Peroperty in Hypereutectic Al-Si Alloys (과공정 Al-Si 합금의 마모 특성에 미치는 잔류응력의 영향에 관한 연구)

  • Kim, Heon-Joo;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • The effects of modification processing on the refinement of primary Si and the wear behavior of hyper-eutectic Al-Si alloys have been mainly investigated. Refining effects of primary Si in Al-17%Si alloy was more efficient than that of B.390 alloy. Optimum condition of getting the finest primary Si microstructure was when AlCuP modifier is added into the melt at $750^{\circ}C$ and held it at $700^{\circ}C$ for 30 minutes. Wear loss in the specimens of as-cast condition decreases as the size of primary Si decreases, in the order of B.390 alloy, B.390 alloy with AlCuP addition, Al-17%Si alloy and Al-17%Si alloy with AlCuP addition. Wear loss in the aged condition of Al-17%Si alloy, B.390 alloy and B.390 alloy with AlCuP addition decreased due to the increase of compressive residual stress in the matrix by the aging treatment. While, wear loss increased in the aged specimens of Al-17%Si alloy with AlCuP addition and Hepworth addition in which compressive residual stress decreases by the aging treatment. Therefore, it is assumed that higher compressive residual stress in the matrix can reduce the wear loss in composite materials such as hyper-eutectic Al-Si alloys.

  • PDF

A Study on Life Estimation of a Forging Die (단조 금형의 수명 평가에 관한 연구)

  • Choi, C.H.;Kim, Y.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.