• Title/Summary/Keyword: Wear of ceramics

Search Result 187, Processing Time 0.024 seconds

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90$\pm$2$^{\circ}C$, 25 wt% NaOH). All of the specimens, \circled1Si$_3$N$_4$, \circled23Y-TZP and \circled33Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-Hipped, and then polished up to 0.02 ${\mu}{\textrm}{m}$Ra of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress or 3.76 Gra and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_3$N$_4$. 3Y-TZP alloyed with 5 wt% CeO$_2$specimens were not worn after aging and no phase transformation occurred while aging.

  • PDF

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.121-125
    • /
    • 2000
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90 $\pm$ 2$\^{C}$,25 wt% NaOH ). All of the specimens, ① Si$_3$N$_4$, ② 3Y-TZP and ③ 3Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-HIPed, and then polished up to 0.02 $\mu$mRa of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress of 3.16 GPa and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$ and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_2$N$_4$. 3Y-TZP specimens alloyed with 5 wt% CeO$_2$ were not worn after aging and no phase transformation occurred while aging.

A Propotition of a New Parameter in Ceramic Wear(I) Friction and Wear Characteristics of Silicon Nitride and Zirconia (세라믹 마멸에 있어서의 새로운 파라메터 제안 (I) 질화규소와 지르코니아의 마찰$\cdot$마멸 특성)

  • ;;Hsu, S. M.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1441-1455
    • /
    • 1993
  • Under unlubricated condition, the friction and wear tests of silicon nitride and zirconia manufactured by HIP were carried out at room temperature. The wear resistance of silicon nitride was superior to that of zirconia under low load, whereas the wear resistance of zirconia was superior to that of silicon nitride under high load. Wear model of ceramic was suggested by the microscopic SEM observation of worn surfaces and debris. Theoretical analysis and discussions based on linear fracture mechanics were made out about this ceramic wear model. From the theoretical analysis, a new nondimensional parameter, Scf, was introduced to estimate wear rate of ceramics. This new nondimentional parameter consists of contact pressure, surface defect of contact material, frictional coefficient and fracture toughness.

A study on the grinding machining of engineering ceramics with high efficiency using "In-process dressing" (연속 드레싱 공정을 도입한 엔지니어링 세라믹스의 고능률적 연삭 가공에 관한 연구)

  • 강재훈;이재경
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.130-143
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system using WA stick type honing stone is proposed. Representative Engineering ceramics, such as AI$_{2}$O$_{3}$, Si$_{3}$N$_{4}$, are ground with diamond wheel. Also bending strength test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding machining method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficiency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

A study on the surface grinding machining of Engineering ceramics using "In-process dressing" method (연속 드레싱 공정을 이용한 엔지니어링 세라믹스의 평면 연삭 가공에 관한 연구)

  • Kang, Jae-hoon;Heo, Seoung-jung;Kim, Won-il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.178-189
    • /
    • 1993
  • Engineering ceramics have some excellent properties as the material for the mechanical components. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper experiments are carried out to obtain the effect of "In-process dressing" to grind the Engineering ceramics with high efficiency. To save running time for dressing process and obtain restraint effect of diamond grain wear, "In-process dressing" system usint WA stick type honing stone is proposed. Representative High Strength Engineering ceramics A1$_{2}$O$_{3}$ and Si$_{3}$N$_{4}$are ground with diamond wheel. Also bending strengrh test is carried out to check upward tendancy of mecahnical properties as the result of machining defact restraint through the grinding maching method using "In-process dressing" process. Some results obtained in this study provide useful information to attain the high efficency grinding and the high mechanical properties of Engineering ceramics.rties of Engineering ceramics.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료 가공기술에 관한 연구)

  • 이석우;최헌종;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Tribological Charactristics of Diamond-like Carbon Deposited on Ferrite

  • Nam-Soo Kim;Dae Soon Lim;Heng-Wook Kim;Sang-Ro Lee
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.185-190
    • /
    • 1995
  • Tribological behavior of the diamond-like carbon (DLC) films sliding on floppy disk has been investigated. Hydrogenated DLC films have been prepared by plasma enhanced chemical vapor deposition (PECVD) using methane and hydrogen mixture in different volume ratios on ferrite substrates. DLC films show lower friction coefficients (0.2~0.4) than those of the uncoated ferrite(0.4~0.5). DLC films containing more hydrogen exhibit higher wear resistance. To investigate the roughness effect on wear, the substrates were polished with SiC papers prior to deposition. Too fine or too rough DLC surfaces result in poor wear resistance. Wear resistance of annealed DLC films at higher temperature slightly increases with respect to as-deposited film.

  • PDF

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Conditions

  • Kim, Sung-Ho;Lee, Soo-Wohn;Park, Yong-Kap
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2000
  • Si$_3$N$_4$powder with 2 wt% $Al_2$O$_3$and 6 wt% $Y_2$O$_3$additives was sintered by the gas pressure sintering (GPS) technique. The unlubricated wear behavior depending on sintering conditions such as sintering temperature, pressure, and sintering time was investigated. When the sintering temperature and time increased, the larger elongated grains were formed and the microstructural heterogeneity increased. When sintering pressure increased, grain growth, however, was impeded. Also, the wear properties depended on microstructure and friction coefficient were related to grain size. Based on the experimental results, the wear properties were associated with initial friction coefficients as well as mechanical properties including fracture toughness and flexural strength.

  • PDF

Effects of Humidity and Sliding Speed on the Wear Properties of $Si_3N_4$ Ceramics (습도 및 미끄럼 속도에 따른 질화규소의 마찰 마모 특성에 관한 연구)

  • 이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 1993
  • The wear properties of two types of $Si_3N_4$(silicon nitride) exposed to high and low humidity were examined experimentally for various sliding speed. Bearing steel was used as the disk material at pin-on-disk type sliding. Wear rates of pressureless sintered-plus-hot-isostatic pressed Si3N4 were slightly lower than those of pressureless sintered $Si_3N_4$. It was observed that adsorbed moisture and sliding speed markedly influenced the wear properties of $Si_3N_4$. The highest wear rate was obtained under the high humidity and low sliding speed condition. As the sliding speed was increased, wear rates were decreased and the humidity effect on the wear rates of $Si_3N_4$ was lowered. The result that the $Si_3N_4$ pin showed a high wear rate under the high humidity condition was explained by the property change due to the adsorbed moisture, plowing action by the hard particles of $Fe_2O_3$ from the disk, and the corrosion effect at $Si_3N_4$ surface. Increase in sliding speed was supposed to have reduced the humidity effect on wear rate of $Si_3N_4$ by raising the temperature of both the bearing steel disk and $Si_3N_4$ pin specimen.