• Title/Summary/Keyword: Wear damage

Search Result 299, Processing Time 0.026 seconds

Discussion on Rolling Contact Fatigue with Wear Amount by X-ray Reflection (마멸량의 대소에 따른 구름접촉 피로의 X선적 해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.51-55
    • /
    • 1994
  • Rolling friction test was carried out to investigate the effect of the wear amount on rolling contact fatigue process in lubrication oil. The methods of this process were conducted at two Hertzian contact pressure and three slide ratio in each case by employing normalized and annealed carbon steel. During process of the rolling contact fatigue, the number of rotation until surface damage was occurred, the wear amount of rolling contact surface, and residual stress and half-value breadth using X-ray reflection on rolling contact surface were investigated. The result of this study shows that rolling contact fatigue process was directly influenced by wear trend and was confirmed by change of residual stress and half-value breadth on rolling contact surface.

Characteristics of tool wear and cutting temperature in machining of SUS 304 (SUS 304 절삭시 공구마모와 절삭온도의 특성)

  • Kwon, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.71-79
    • /
    • 1994
  • The aim of this study is to analyze the behavier of SUS 304 during the cutting process and the resulting cutting temperaturce. Since SUS 304 is a difficult-to-machine material, tool damage is largely affected by the suitability of cutting conditions. Therefore, in varying such cutting conditions, the experiment investigates the relations between cutting temperature and tool wear during the cutting process. All the cutting temperature data were manipulated successfully, and the tool temperature distributions were analyzed by a finite element method based on the acquisition data. In the results, the characteristics of cutting temperature are related to the difficulty of machining characteristics.

  • PDF

Discussion on Rolling Contact Fatigue with Wear Amount by X-ray Reflection (마멸량의 대소에 따른 구름접촉 피로의 X선적 해석)

  • 이한영
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.71-77
    • /
    • 1994
  • Rolling friction test was carried out to investigate the effect of the wear amount on rolling contact fatigue process in lubrication oil. The methods of this process were conducted at two Hertzian contact pressure and three slide ratio in each case by employing normalized and annealed carbon steel. During process of the rolling contact fatigue, the number of rotation until surface damage was occurred, the wear amount of rolling contact surface, and residual stress and half-value breadth using X-ray reflection on rolling contact surface were investigated. The result of this study shows that rolling contact fatigue process was directly influenced by wear trend and was confirmed by change of residual stress and half-value breadth on rolling contact surface.

Sliding Wear Behavior of UHMWPE against Novel Low Temperature Degradation-Free Zirconia/Alumina Composite

  • Lee, K.Y.;Lee, M.H.;Lee, Y.H.;Seo, W.S.;Kim, D.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.365-366
    • /
    • 2002
  • The sliding wear behavior of ultra high molecular weight polyethylene (UHMWPE) was examined on a novel low temperature degradation-free zirconia/alumina composite material and conventional alumina and zirconia ceramics used for femoral head in total hip joint replacement. The wear of UHMWPE pins against these ceramic disks was evaluated by performing linear reciprocal sliding and repeat pass rotational sliding tests for one million cycles in bovine serum. The weight loss of polyethylene against the novel low temperature degradation-free zirconia/alumina composite disks was much less than those against conventional ceramics for all tests. The mean weight loss of the polyethylene pins was more io the linear reciprocal sliding test than in the repeal pass rotational sliding lest for all kinds of disk materials. Neither the coherent transfer film nor the surface damage was observed on the surface of the novel zirconia/alumina composite disks during the test. The observed r,'stilts indicated that the wear of the polyethylene was closely related to contacting materials and kinematic motions. In conclusion, the novel zirconia/alumina composite leads the least wear of polyethylene among the tested ceramics and demonstrates the potential as lhe alternative materials for femoral head in total hip joint replacement.

  • PDF

Investigation and Analysis of the Occurrence of Rail Head Checks

  • Jin, Ying;Aoki, Fusayoshi;Ishida, Makoto;Namura, Akira
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.43-49
    • /
    • 2009
  • Wear and rolling contact fatigue (RCF) defects are most important causes of rail damage, and often interaction competitive at present railway track. Head check is one of rolling contact fatigue (RCF) defects, and generally occurs in mild circular curves and transition curves that are set at both ends of sharp circular curves. Wear tends to limit the crack growth of head checks by removing the material from the RCF surface. In order to clarify the conditions of the occurrence and growth of head checks, the authors measured the interacting forces between wheels and rails and the angle of attack of wheelset, and carried out contact analyses using the actual profile data of wheels and rails. The effects of the lateral force, the contact geometry, and the wear rate at rail gauge comer on the formation of head checks were also analyzed by using the worn profiles of actual wheels and rails and the data obtained by a track inspection car. Some specific range of wear rate at the gauge comer was identified as having close relation with occurrence of head checks.

  • PDF

Measurement of the Wear Amount of WC-coated Excavator Spacer using the PTA Process to Improve Wear Resistance by Using Reflective Digital Holography (반사형 디지털 홀로그래피를 이용한 내마모성 향상을 위한 공법이 적용된 PTA 굴착기의 초경 코팅 스페이서의 마모량 측정)

  • Shin, Ju-Yeop;Lim, Hyeong-Jong;Lee, Hang-Seo;Kim, Han-Sub;Jung, Hyun-Chul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • The spacer, which is located between the bucket and the arm of an excavator, has a role in preventing damage to the excavator arm during excavation work. When the durability of the spacer is increased, the lifetime of the arm can be extended and the processing costs can be reduced. To increase the durability of the spacer, tungsten carbide (WC) coating was applied on the surface of a spacer using the plasma transferred arc (PTA) process. The confirm the durability, a wear test using a pin-on disk type of wear testing machine was done under the given conditions and the wear amount on the surface of a tested specimen was measured using reflective digital holography. The results were compared with that of ALPHA-STEP.

Evaluation of Friction and Wear Characteristics of Carbon-based Solid Lubricant Films for Surface Application of Compressor Parts (압축기 부품소재 표면 적용을 위한 탄소 기반 고체 윤활막의 마찰 및 마모 특성 평가)

  • Lee, Sung-Jun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.222-226
    • /
    • 2022
  • Between diaphragms made of stainless steel (SUS), which is the main component of a hydrogen gas compressor, micro-slip occurs owing to repeated bending, resulting in scratches on the surface. The surface scratch of the compressor part is a problem with airtightness, which reduces the efficiency of the compressor; in severe cases, damage is a possibility. In this study, the changes in friction and wear characteristics due to the surface polishing of SUS and carbon-based solid lubricant films (graphene and CNT) were analyzed. Bare SUS, polished SUS, graphene film, and CNT film specimens were prepared. The surface roughness of the SUS was significantly reduced by surface polishing but increased by carbon-based solid lubricating films. In contrast, the friction coefficient maintained a similar value after surface polishing but was significantly reduced by the carbon-based solid lubricant films. In particular, the graphene film exhibited the lowest initial friction coefficient, while the CNT film exhibited the lowest overall average friction coefficient. Regarding the wear rate, polished SUS exhibited the lowest value, but the surface condition of the wear track showed that the carbon-based solid lubricating films were relatively less damaged. Although the wear rate measured was largely attributed to the solid lubricating film peeling off, the SUS surface under the film was considered protected.

LOW COST DEBRIS ANALYSIS FOR INDUSTRIAL MACHINERY CONDITION EVALUATION

  • Raadnui, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.465-466
    • /
    • 2002
  • In any mechanical system consisting of gears, shafts and/or bearings, the majority of metallic particles deposited into and carried by the lubrication system originate from the deterioration of oil-wetted working surfaces, even in proper lubrication system, due to failure mechanism (s) such as wear, fatigue and fretting corrosion. Determination of the point at which transition from normal to abnormal or to actual damage occurs has become a focus of attention in research activities for years, because it has been recognized that reliable, economic operation can be achieved through appropriate preventative measures. Known collectively from 'all size wear debris analysis' as early failure detection, the methods of testing for damage differ considerably, range from a micron or a submicron size debris analysis to Magnetic Chip Detector (MCD) ferrous debris analysis. This paper will be focused on the utilization of the low-cost analysis techniques for evaluation of industrial machinery condition.

  • PDF

UHPLC System Shutdown and Reactivation Advice (UHPLC 시스템 종료 및 재가동 시 가이드)

  • Mark Fever;Gemma Lo
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.8.1-8.3
    • /
    • 2024
  • Ultra-high performance liquid chromatography (UHPLC) systems are integral to modern analytical laboratories, necessitating careful maintenance and operation protocols to ensure optimal performance. This document provides comprehensive guidelines for the proper shutdown and reactivation of UHPLC systems to prevent damage and maintain operational efficiency. • Shutdown: Remove the column and replace it with a union to avoid blockages. Flush the system with a compatible solvent mix, clean mobile phase reservoirs to prevent microbial growth, flush the pump with storage solvent, and clean the autosampler, including the needle and injection port. • Reactivation: Inspect the system for wear or damage, gradually reintroduce mobile phases starting with a weak solvent, reinstall the column securely, and perform system checks on baseline stability, pressure consistency, and detector performance. By adhering to these guidelines, laboratories can ensure the longevity and reliability of their UHPLC systems, maintaining high analytical performance and minimizing downtime. These procedures help prevent common issues such as blockages, contamination, and component wear, thereby supporting efficient and accurate analytical operations.

  • PDF

Wear Transition during Sliding in Glass (유리에서 미끄럼시의 마모천이)

  • 조성재;방건웅;김종집;문한규
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 1989
  • A wear transition mechanism during sliding in glass has been observed. Disk specimens of sodalime-silicate glass were slid against AISI 52100 steel with paraffin oil as lubricant. Observations of the micrrx structural change on the worn surface showed that semi-circular cone cracks (SCCCs) were suddenly produced after a certain critical sliding time. These SCCCs brought about the severe damage in the form of extensive microchipping during further sliding. It was shown that the abrupt appearance of the SCCCs is attributable to the grooves formed during sliding, which act as surface flaws.