• Title/Summary/Keyword: Wear Ring

Search Result 134, Processing Time 0.025 seconds

Wear Characteristics of Cylinder-Liner Materials for Diesel Engine at Elevated Temperature (디젤엔진용 실린더 라이너 소재의 고온 마모특성)

  • Kim, Jin-Yeol;Kim, Jae-Hoon;Oh, Kwang-Keun;Lee, Seung-Hak;Chang, Joon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1131-1136
    • /
    • 2015
  • In a diesel engine, the wear of the cylinder liner occurs because of the continuous reciprocating motion of the piston ring. This wear reduces the performance of the diesel engine and shortens its service life. This study evaluated the wear characteristics of GT metal and a conventional metal used for cylinder liners using a ship's diesel engine. Wear tests were performed at temperatures of $25^{\circ}C$, $175^{\circ}C$, and $325^{\circ}C$, and under loads of 10 N, 30 N, and 50 N. The amount of wear, specific wear rate, and friction coefficient were evaluated for each condition. To analyze the wear mechanism, observations were made on an SEM. In the case of both metals, abrasive and adhesion wear occurred on the wear surfaces at room temperature, and corrosion wear was observed at high temperatures. The amount of wear and the specific wear rate of the GT metal were lower than those of the conventional metal at all temperatures, and hence it can be concluded that the wear characteristics of the GT metal are much better.

Development of Torsion Bar for Antiroll-Bar Assembly for Express Train (고속철도용 안티롤바 어셈블리의 토션바 개발)

  • Tominaga, Yasutoshi;Pyun, Young-Sik;Kim, Dong-Il;Choe, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.979-984
    • /
    • 2012
  • An antiroll-bar assembly is a precision component that is designed to control the rolling of railway cars. It is important for ensuring a safe and comfortable ride. A torsion bar is the main part of the antiroll-bar assembly. Now, this part is classified as a consumable, and it is imported into Korea from France. Therefore, there is a strong need to domestically develop a torsion bar suitable for Korean conditions and to reduce cost and improve quality. In this study, an antiroll bar is developed, and it is analyzed and tested by using a road histogram measured on Korean railroads. This bar shows satisfactory results in a comparison with the imported bar. It has a novel design featuring a ring cover made of SUS steels to prevent the corrosion of the torsion bar. Its safety is examined through CAE analysis and wear tests. It is found that its design does not result in a significant difference in static and fatigue safety. Two different SUS steels were investigated in terms of their wear resistance, and the best one was adopted.

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

THE STATE OF THE ART OF THE INTERNAL PLASMA SPRAYING ON CYLINDER BORE IN AlSi CAST ALLOYS

  • Barbezat, G.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.47-52
    • /
    • 2001
  • For the wear protection of cylinder bore in aluminum cast material the internal plasma spraying technology offers a new economical solution. The size and the weight of the engine blocks significantly can be decreased in comparison with the traditional cast iron sleeves. The coefficient of friction between piston ring and cylinder wall sensitively can be reduced and the wear resistance increased from several factors. The paper gives an overview of the technology from the AlSi cast alloys for engine block to the non destructive testing technology used after the machining by diamond honing. The actual results in engines of different types also will be shown. The economical advantages of the plasma spraying (or the internal coating in cylinder bore also will be discussed in comparison with the different alternatives of technology. The aspect of the market introduction also will be discussed in this paper.

  • PDF

Case Study of Tribological Failure Characteristics in Automotive Steering System (자동차 조향장치의 트라이볼로지적 고장특성에 관한 사례연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • The purpose of this paper is to study and analyze the failure examples on tribological characteristics of an automotive steering system. In this failure study, the grease leakage may stick leaked grease, dust, and wear particles between pinion and rack gears in mechanical steering system. In the case of seal failures such as a rod seal, o-ring and oil seals, the gear box and oil pump do not operate properly due to lack of oils. This means that oil pump does not supply a working fluid and produce a normal oil pressure of the steering system. This leads to leak a working fluid from the seals and produce a wear between pinion and rack gears. Especially, the leaked oil is usually mixed with internal wear particles and foreign dust/fine sands. Thus no leakage of working oils is very important design concepts, which is strongly related to the sealing components and smoothly operating of the mechanical friction parts of power steering system.

Vibration Analysis for Failure Diagnosis of Cylinder Liner of Large Ship Engine (선박엔진의 실린더 라이너의 손상 진단을 위한 진동 분석법)

  • Koo, Hyunho;Cho, Yonsang;Park, Junhong;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Damage to the cylinder liner of large ship engines, such as scuffing on the surface, can occur very easily because it is operated in a corrosive environment. This scuffing may be due to oil film destruction and corrosive wear caused by water and sulfur included in the fuel, abrasive impurities, and poor lubricants. Thus, a method for monitoring the condition and diagnosing the failure of the cylinder liner and piston ring is needed. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which simulated an engine cylinder in a corrosive atmosphere. The lubricants used were base oil, stirred oil with distilled water, a NaCl solution, and dilute sulfuric acid. The friction coefficient and frequency spectrum were measured using a load cell and acceleration sense in each experimental condition. We then used these results to diagnose the failure of the cylinder liner.

Effect of Surface Roughness of Counterface on Tribological Characteristics of PTFE and UHMWPE (상대재료의 표면거칠기에 따른 PTFE와 UHMWPE의 마찰 및 마멸 특성)

  • Dong, Sun;Chung, Koo-Hyun;Lee, Kyung-Sick
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.293-301
    • /
    • 2011
  • Understanding of the tribological characteristics of polytetrafluoroethylen (PTFE) and ultra-high-molecular-weight polyethylene (UHMWPE) is crucial for their applications such as bearing and total joint replacement. In this work, the effect of the surface roughness of carbon steel on the tribological behaviors of PTFE and UHMWPE was experimentally investigated by using block-on-ring tribotester with friction force monitoring capability. It was found that that the amount of material transfer layers of PTFE formed on the carbon steel was significantly larger than those of UHMWPE, which was responsible the lower friction coefficient of PTFE. It was also concluded that the effect of surface roughness of carbon steel on the friction coefficient of UHMWPE was more significant than that of PTFE. For UHMWPE, it was found that the effect of surface roughness of counterface was varied with respect to applied normal force and sliding as well. Based on Archard's wear law, the wear coefficient of PTFE and UHMWPE was calculated to be $3{\times}10^{-5}$ ~ $8{\times}10^{-5}$ and $7{\times}10^{-6}$ ~ $2{\times}10^{-5}$, respectively.

Groove Design of a Gas Seal Including Friction Heatings (마찰열을 고려한 가스시일의 그루브 설계)

  • 김청균;조승현;고영배;차백순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.201-210
    • /
    • 2000
  • The noncontacting groove end face seal is one of various approaches to sealing gases with a single seal. Gas pumped into groove maintains operating gap and lubricates between primary ring and mating ring. So it removes heat and decreases face wear. In this paper, K-type and T-type grooved seals have been analyzed numerically using the finite element method. It explains the effects of groove shapes in gas seals along rotating speeds with a temperature gradient, face distortion, stress and so on. The calculated FEM results show the operating gap and rotating speed are strongly related to the leakages of a gas seal and that T-type groove seal shows a good thermal performance compared to K-type groove seal.

  • PDF

Critical Speeds Evaluation of Turbo Pump Unit with a Elasticring Inserted Ball Bearing (탄성 링을 갖는 볼 베어링 지지의 터보 펌프 임계 속도에 관한 연구)

  • Lee, Yong-Bok;Kim, Chang-Ho;Kwak, Hyun-Duck;Ha, Tae-Woong;Yoo, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.22-28
    • /
    • 2001
  • This study was performed to evaluate the dynamic behavior of turbo pump unit. The acceptable separate margin of $1^{st}$ critical speed was obtained by the use of elastic-ring inserted ball bearing, while the poor separate margin of $1^{\st}$ critical speed was appeared in the case without the elastic-ring. In addition, the results show that the stiffness and damping of plain seals give more separate margin of $2^{nd}$ critical speed. However the wear or the failure of seals could reduce the $2^{nd}$ critical speed near the operating speed.

  • PDF

A Study for Shift Qulity and Durability of Manual Transmission Oil (MTM OIL의 변속성능과 내구성에 대한 연구)

  • Cha Sang Yeob;Yang Si Won
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.185-190
    • /
    • 2003
  • Synchronizer ring performance is strictly required in order to extend manual transmission oil drain interval. Zn type additive, which is used as dispersant and anti-wear additive instead of SP additives in manual transmission oil, is applied to improve Synchronizing function and durability. But only Zn type additive is not suitable for high torque transmission because it has not good extreme pressure characteristics. We research on the synchronizer friction and extreme pressure properties in according to change additive types. As a result, it was found that the use of non-active extreme pressure and friction modifier additives has benefit in the improvement of synchronizer friction characteristics and durability.

  • PDF