• Title/Summary/Keyword: Wear Mechanism

Search Result 455, Processing Time 0.036 seconds

Wear Mechanism of Plasma-Sprayed Coating in Mo- and Co-Based Alloy

  • Lee, Soo W.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.108-113
    • /
    • 1995
  • Wear and friction behavior of plasma-sprayed coatings in Mo- and Co-based alloy were studied for the application of piston-ring automobile engine. The plasma-sprayed coatings were varied with gun current density, gas flow, and distance. The surface roughness, microhardness, and wear volume were measured depending on the spray distances. The high temperature hardness value were also measured as a function of temperature. Ball-on-disc geometry configuration tribometer was utilized in air. The wear tests were performed in the temperature ranges from room temperature to 825$^{\circ}$C to investigate the tribological trend of the piston-ring materials in the lack of lubricant. The cross sections of wear track were investigated, using microscopy.

Wear Mechanism of Inconel Alloys in Room Temperature Water (물분위기에서의 인코넬 합금의 마멸기구)

  • 이영호;김인섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.103-108
    • /
    • 2001
  • Wear test has been performed to evaluate the wear mechanism of Inconel alloys against ferritic stainless steels in room temperature water. By means of scanning electron microscopy (SEM), the worn surface and microstructure of subsurface layer have been examined. The wear at steady state conditions result in the formation of 5∼7${\mu}$m thick layers with fragmented microstructure. The thickness of these layers seems to depend on the ability of work hardening and deformation accommodation at the contact areas during wear. Therefore, in room temperature water, the wear rate is closely related with the wear resistance of these fragment microstructure which are generated after severe subsurface deformation.

  • PDF

A Study on the Improvement of the Wear Resistance of P-bronze (인청동의 내마모성향상에 대한 연구)

  • Song, Kun;Kwun, Sook-In;Cha, Young-Hyun
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.56-68
    • /
    • 1988
  • The wear resistance of P-bronze which is widely used as worm gear material was investigated. In order 1o study the effect of additional elements on the wear resistance of Pbronze, the applied load and sliding time were selected as variables, and SCM4, were used as against metal. The addition of Fe improve wear resistance, for it precipities hard Fe$_3$ P phase and the work hardening coefficients are lowered due to decreasing solubility of P. When Fe is added in conventional P-bronze, the alloy is rather sliding than forming wear debris by frictional force during wear test. Experimental results indicated that the wear mechanisms for P-bronze are mainly consisted of abrasive wear due to Beilby layer forming mechanism and adhesive wear due to thermally activated wear mechanism. Moreover, the weight loss is decreased in accordance with increasing load and time. However the rate of wear loss is decreased as the sliding time is increased.

Development of methodology for evaluating tribological properities of Ion-implanted steel (이온 주입한 강의 미시적 마모 튼성의 평가)

  • MOON, Bong-Ho;CHOI, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF

A Study on the Dry Wear Characteristics of Austempered Ductile Cast Iron (오스템퍼링 處理된 球狀黑鉛鑄鐵의 乾燥磨滅 特性에 관한 硏究)

  • 강명순;전태옥;김형자;박흥식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.489-496
    • /
    • 1988
  • This paper is studied to know wear mechanism in variation of austempering temperature and holding time of austempered ductile cast iron against mating material SM45C hardened by heat treatment. The wear tests were carried out by rubbing the annular surface of two test pieces in dry sliding friction. The wear mechanism was investigated by scanning electron microscopy and the retained austenite volume fraction was investigated by X-ray diffractometer. The experimental results show that the wear characteristics depend largely on the oxidation of the testing materials which is influenced by the sliding velocity and distance. The retained austenite has a negative effect during frictional contact because it has increased severe wear by softened surface layer. It is shown experimentally that hard metals have lower frictional resistance and hence the resistance to adhesion is increased due to stronger interatomic linking bonds and increase in the surface energy.

Wear behavior of SM55C steel by rolling contact (구름접촉에 의한 SM55C의 마멸 거동)

  • Park, Beom-Su;Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.240-247
    • /
    • 2002
  • The rolling wear behavior of SM55C is investigated under lubrication. This is a comparative tribological behavior of heat treatment effect for SM55C. Rolling wear test method is used for Ball-on-disk type. Specimens can be classified into two main groups: as-annealing and non-annealing. As result of wear behavior, flanking initial time of non-annealing specimen keep at retard but it have not under high normal load. One of the notable features of annealing specimen is steady flanking initial time for a normal load in this experiment. Failure mechanism of SM55C is due to the fatigue wear such like flanking, pitting etc.. Flanking leads to abruptly fracture of worn surface. Fracture mechanism has a connection with normal load and polishing direction of specimens.

  • PDF

Wear Transition in Alumina and Silicon Carbide Ceramics During Sliding

  • Cho, Seong-Jai;Kim, Dong-Jin;Ryu, Hyun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.26-30
    • /
    • 1995
  • Sliding experiments have been conducted on alumina and silicon carbide ceramics. Wear and friction data of both materials indicate that wear proceeds in two distinct stages. The wear occurs by a relatively mild plastic-grooving process in the initial stage, but eventually gives way to a severe grain pull-out process after a defined period of sliding test. The datails of the transition mechanism are presented. The effects of grain size and second phase particle on the wear transition are also presented.

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Effect of an temperatures of post-spray heat treatment on wear behavior of $8%Y_2O_3-ZrO_2$ coating

  • Chae, Y.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.181-182
    • /
    • 2002
  • Most recent, Plasma ceramic spray is used on parts of tribosystem, has been investigated on the tribological performance. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce better wear resistance and longer life in various conditions. The purpose of this work was to investigate the wear behavior of $8%Y_2O_3-ZrO_2$ coating due to temperatures of post-spay heat treatment. The plasma-sprayed $8%Y_2O_3--Zirconia$ coating was idiscussed to know the relationship between phase transformations and temperatures of post- spray heat treatment. Wear tests was carried out with ball on disk type on normal load of 50N, 70N and 90N under room temperature. The transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings was observed by SEM. The tribologieal wear performance was discussed a point of view for residual stress. Consequently. post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in coating system has a significant influence on the wear mechanism of coating.

  • PDF