• Title/Summary/Keyword: Weapon Effectiveness Data

Search Result 40, Processing Time 0.024 seconds

Research of Considerations for Effective Operation of Weapons Data Link (무장데이터링크의 효과적인 운용을 위한 고려사항 고찰)

  • Woo, Sang Hyo;Baek, Inhye;Kwon, Ki-Jeong;Kim, Ki Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.886-893
    • /
    • 2018
  • U.S. and the allies attacked chemical weapons sites in Syria in 2018, and verbal battles are carried out about the effectiveness of the air strike. Syria claimed 13 missiles were shot down, and Russia claimed 71 missiles were shot down while the U.S. released pictures of completely destroyed targets, only. It led controversy about the effectiveness of missile defense system. If there is a method to observe mission success rate of the air strike, it can not only improve combat awareness but also can be a good sales strategy in military industry. This paper describes effects and considerations of a Weapon Data Link(WDL) technology which can be used as a smoking gun of effectiveness. The paper describes WDL abilities such as In-Flight Track Update, Loiter, and Bomb Hit Indication etc., and presents examples of expected effectiveness of the WDL. In addition, this paper briefly summarizes operational consideration for better performance.

Development of Terrain Analysis S/W for Military Use of DTM (수치지형 자료의 모델링 및 지형분석 S/W의 개발)

  • Mun Seung-Hwan;Choe Byeong-Gyu;Hwang Mun-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.31-43
    • /
    • 1991
  • The fire effectiveness and the operationability of the ground weapon system (such as tank, armored vehicle, howitzer, MLRS, ${\cdots}$), whose operations are usually happened on the ground, are dependent not only on their performances but also on the terrain environments. Especially, the artillery weapons systems' effectiveness is largely varied, because their maneuverability (such as translation, occupation of their sites) and the fire effectiveness are very dependent on the terrain. In this paper, presented are the methods how to analyze the terrain using the digital terrain data. And a software (which are implemented on the IBM PC compatible personal computer) is developed for the analysis of the terrain using the various method of computer Aided Geometric Design and Modeling. The S/W is expected to be very useful for the evaluation of the artillery weapon systems and for the commanders' decision making.

  • PDF

A Study on the assessment of force improvement effectiveness of KNTDS (KNTDS의 전투력 상승효과 측정에 관한 연구)

  • 이수열;이재영
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.56-75
    • /
    • 2001
  • Most O4I Systems are considered as one of the major system in future Information Warfare. However, it is difficult to measure the effectiveness of force improvement when C4I System is used with other weapon systems, quantitatively. In this Paper, we propose a quantitative method to evaluate the force improvement effectiveness of KNTDS(Korea Naval Tactical Data System). This method utilized the Lanchester's equations and its applications. We also showed a numerical example based on a given scenario in a sea battle and the ASP(Analytic Hierarchy Process) Method is applied to verify its results.

  • PDF

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

Calibration of a Korean Weapon Systems Wargame Model (한국적 무기체계의 워게임 모델 교정에 관한 연구)

  • Jung, Kun-Ho;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Some of the wargame simulators currently used in the Korean Army were developed by other countries, and do not adequately reflect the Korean Peninsula terrain and weapon systems. This implies that these war game simulators need to be calibrated with respect to the input parameters for properly assessing the effectiveness of the Korean weapon systems. In this paper, AWAM, a wargame simulator, is calibrated in terms of the time-based fighting power(FP). The FP data obtained from the Korea Combat Training Center(KCTC) are used as a reference, and the differences between the AWAM and KCTC FP data are calculated at certain points in time. Then, the Taguchi robust design method is adopted using the probabilities of hitting for the K-2 rifle as controllable input parameters. Two performance characteristics are used. One is the difference between the AWAM and KCTC FP data and the other is the score derived by grouping the difference data. For each case, optimal settings of the probabilities of hitting are determined such that the mean of each characteristic is close to 0 with its dispersion being as small as possible.

Establishing Method of RAM Objective Considering Combat Readiness and Field Data of Similarity Equipment (전투준비태세 및 유사장비 운용자료를 활용한 RAM 목표 값 설정방법에 관한 연구)

  • Kim, Kyung-Yong;Bae, Suk-Joo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.127-134
    • /
    • 2009
  • RAM(Reliability, Availability, Maintainability) is important performance factor to keep combat readiness and optimize operational and maintenance cost of weapon systems. This paper discusses the method to establish RAM for combat readiness by using field failure data from similarity equipments. Operational availability is estimated from a binomial distribution function of user's operational conditions such as combat readiness preservation probability, operational rate, operational availability and total number of equipment. Reliability and maintainability is estimated from field failure data from similarity equipment to accomplish operational availability. The effectiveness of established RAM is verified through analysis of combat readiness preservation probability and mission reliability. A case study of weapon system illustrates the process of the proposed method.

Development of Simulation Logic for Wargame Model Based on Warhead Detonation Test Data (탄두 기폭실험 결과를 활용한 워게임모델 모의논리 개발)

  • Seil An;Yongseon Lee;Sungho Choi ;Sangwoo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.13-25
    • /
    • 2024
  • In the performance analysis of a weapon system, the combat effectiveness is difficult to go beyond the conceptual level in the early stages of development. This is especially true in the case of new concept of weapon system that has never existed before. In this study, with the aim of analyzing the effectiveness of small personal guided weapons, the design of the warhead and the detonation test were carried out and the results were analyzed. Afterwards, trajectory of fragments were calculated from the results, and it is applied to the anti-personnel effectiveness logic which is a part of combat simulation tool. At the same time, delivery accuracy logic was constructed from Monte-Carlo simulation with 6-DOF trajectory model. Subsequent simulated experiments were conducted with test scenarios to confirm the simulation logic reflecting the results of the warhead detonation tests for verifying the simulation approach of weapon systems, and it was confirmed that the simulation logic incorporating the results of the warhead detonation tests functioned properly.

The Fault Analysis Model for Air-to-Ground Weapon Delivery using Testing-Based Software Fault Localization (소프트웨어 오류 추정 기법을 활용한 공대지 사격 오류 요인 분석 모델)

  • Kim, Jae-Hwan;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.59-67
    • /
    • 2011
  • This paper proposes a model to analyze the fault factors of air-to-ground weapon delivery utilizing software fault localization methods. In the previous study, to figure out the factors to affect the accuracy of air-to-ground weapon delivery, the FBEL (Factor-based Error Localization) method had been proposed and the fault factors were analyzed based on the method. But in the study, the correlation between weapon delivery accuracy and the fault factors could not be revealed because the firing accuracy among several factors was fixed. In this paper we propose a more precise fault analysis model driven through a study of the correlation among the fault factors of weapon delivery, and a method to estimate the possibility of faults with the limited number of test cases utilizing the model. The effectiveness of proposed method is verified through the simulation utilizing real delivery data. and weapons delivery testing in the evaluation of which element affecting the accuracy of analysis that was available to be used successfully.

A Study on the Analysis Method of the Operations Effectiveness of the Joint Coastal Guard System Against Small Targets (소형표적에 대한 합동 해안경계시스템 작전효과 분석방법 연구)

  • Kim, Taeho;Han, Hyun Jin;Lee, Byeong-Ho;Shin, Young-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • The Joint Coastal Guard System is composed of a maritime surveillance system and a anti-coastal infiltration system, and is a system in which the Navy is mainly responsible for the maritime and the Army is responsible for the coast. We analyzed the operations effectiveness of the joint coastal guard system, in which various weapon systems of the army and navy are operated in a complex way, to the extent to which successful operation is possible against small targets. The operations effectiveness analysis was conducted by defining the operations effectiveness by operation type, configuring the simulation environment using METT-T elements, establishing the assumptions of the simulation scenario, conducting the simulation and analyzing the simulation results by weather condition. The simulation tools used were NORAM and EADSIM. As a result of the operations effectiveness analysis, the joint coastal guard system currently in operation showed a significant difference in operational success depending on the size of the target and weather conditions. This research can be used as useful data for establishing an effective joint coastal guard system and conducting systematic guard operations.

A Study on Constructing a RMF Optimized for Korean National Defense for Weapon System Development (무기체계 개발을 위한 한국형 국방 RMF 구축 방안 연구)

  • Jung keun Ahn;Kwangsoo Cho;Han-jin Jeong;Ji-hun Jeong;Seung-joo Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.827-846
    • /
    • 2023
  • Recently, various information technologies such as network communication and sensors have begun to be integrated into weapon systems that were previously operated in stand-alone. This helps the operators of the weapon system to make quick and accurate decisions, thereby allowing for effective operation of the weapon system. However, as the involvement of the cyber domain in weapon systems increases, it is expected that the potential for damage from cyber attacks will also increase. To develop a secure weapon system, it is necessary to implement built-in security, which helps considering security from the requirement stage of the software development process. The U.S. Department of Defense is implementing the Risk Management Framework Assessment and Authorization (RMF A&A) process, along with the introduction of the concept of cybersecurity, for the evaluation and acquisition of weapon systems. Similarly, South Korea is also continuously making efforts to implement the Korea Risk Management Framework (K-RMF). However, so far, there are no cases where K-RMF has been applied from the development stage, and most of the data and documents related to the U.S. RMF A&A are not disclosed for confidentiality reasons. In this study, we propose the method for inferring the composition of the K-RMF based on systematic threat analysis method and the publicly released documents and data related to RMF. Furthermore, we demonstrate the effectiveness of our inferring method by applying it to the naval battleship system.