• Title/Summary/Keyword: Weapon Assignment

Search Result 39, Processing Time 0.025 seconds

A Study on Model for Target Assignment and Gun Ammunition Required for Naval Surface Warfar (수상전에서의 표적할당 및 포탄소요양 결정모형)

  • Min Gye-Ryo;Kim Heung-Man
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.28-44
    • /
    • 1987
  • This thesis presents a model to assign targets and to determine gun ammunitions required for naval surface warfare. Delivery errors of weapon systems and vulnerability of moving targets are analyzed, then probability to kill moving battle sihps is computed. A weapon-target allocation model is proposed by using the Out of Kilter technique. A model to determine ammunitions required for killing moving targets is also designed. The models are evaluated by simulation and sensitivity analysis.

  • PDF

An Intersection Validation and Interference Elimination Algorithm between Weapon Trajectories in Multi-target and Multi-weapon Environments (다표적-다무장 환경에서 무장 궤적 간 교차 검증 및 간섭 배제 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon;Kim, Kapsoo;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.614-622
    • /
    • 2018
  • As multiple weapons are fired simultaneously in multi-target and multi-weapon environments, a possibility always exists in the collision occurred by the intersection between weapon trajectories. The collision between weapons not only hinders the rapid reaction but also causes the loss of the asset of weapons of friendly force to weaken the responsive power against the threat by an enemy. In this paper, we propose an intersection validation and interference elimination algorithm between weapon trajectories in multi-target and multi-weapon environments. The core points of our algorithm are to confirm the possible interference through the analysis on the intersections between weapon trajectories and to eliminate the mutual interference. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm performs effectively the interference elimination regardless of the number of targets and weapon groups by showing that no cross point exists.

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

Weapon-Target Assignment by ACO, Lanchester′s method (ACO와 Lanchester법칙을 이용한 무장할당)

  • 김제은;이동명;김덕은;김수영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.227-231
    • /
    • 2004
  • 본 연구에서는 군용선 설계 시 중요한 요소인 무장탑재 및 무장 할당 문제 해결을 위해, ACO(Ant Colony Optimization) 알고리즘과 Lanchester 법칙이 결합된 방법론을 제안하고 적용 결과를 검토하는 것을 내용으로 하고 있다.

  • PDF

The Design and Implementation for Efficient C2A (효율적인 방공 지휘통제경보체계를 위한 설계 및 구현)

  • Kwon, Cheol-Hee;Hong, Dong-Ho;Lee, Dong-Yun;Lee, Jong-Soon;Kim, Young-Vin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.733-738
    • /
    • 2009
  • In this paper, we have proposed the design and implementation for efficient Command Control and Alert(C2A). Information fusion must be done for knowing the state and identification of targets using multi-sensor. The threat priority of targets which are processed and identified by information fusion is calculated by air-defence operation logic. The threat targets are assigned to the valid and effective weapons by nearest neighborhood algorithm. Furthermore, the assignment result allows operators to effectively operate C2A by providing the operators with visualizing symbol color and the assignment pairing color line. We introduce the prototype which is implemented by the proposed design and algorithm.

The Optimal Allocation of Aircrafts to Targets by Using Mixed Integer Programming (혼합정수계획법을 이용한 항공기-목표물 최적할당에 관한 연구)

  • Lee, Dae-Ryeock;Yang, Jae-Hwan
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.55-74
    • /
    • 2008
  • In recent warfare, the performance improvement of air weapon systems enables an aircraft to strike multiple targets on a single sortie. Further, aircrafts attacking targets may carry out an operation as a strike package that is composed of bombers, escort aircrafts, SEAD (Suppression of Enemy Air Defenses) aircrafts and etc. In this paper, we present an aircraft allocation model that allocates multiple targets to a single sortie in the form of a strike package. A mixed integer programming is developed and solved by using a commercially available software. The new model is better than existing ones because not only it allocates aircrafts to multiple targets but also it models the concept of the strike package. We perform a computational experiment to compare the result of the new model with that of existing ones, and perform sensitivity analysis by varying a couple of important parameters.

An Effective Recruits' Assignment Method for Early Job Adaptation of Air-munition Maintenance Airmen Using Datamining Technique (데이터마이닝을 이용한 공군 무기정비병의 조기 숙달을 위한 배속방안 연구)

  • Kang, Kew-Young;Yoon, Bong-Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.147-159
    • /
    • 2011
  • Recently, the military service period has been shortened continuously. Meanwhile, more skilled airmen are needed as the complexity of weapon systems increase. This phenomenon could lead to a disastrous result such as deteriorating the level of the readiness and the fighting power. We suggest a method to improve recruit's maintenance capability rapidly by assigning airmen to jobs appropriate to their characteristics using Datamining methods (K-menas and CART). We focus on the assigning method for air force's air-munition maintenance airmen since they are requested more skilled than other airmen. Grouping airmen with k-means method and devising classification rule with CART algorithm, we found that airmen's proficiency arrival period could be shortened by 1.79 months when they are assigned in the suggested way.

A Study on Aircraft-Target Assignment Problem in Consideration of Deconfliction (최적화와 분할 방법을 이용한 항공기 표적 할당 연구)

  • Lee, Hyuk;Lee, Young Hoon;Kim, Sun Hoon
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • This paper investigates an aircraft-target assignment problem in consideration of deconfliction. The aircraft-target assignment problem is the problem to assign available aircrafts and weapons to targets that should be attacked, where the objective function is to minimize the total expected damage of aircrafts. Deconfliction is the way of dividing airspaces for aircraft flight to ensure the safety while performing the mission. In this paper, mixed integer programming model is suggested, where it considers deconfliction between aircrafts. However, the suggested MIP model is non-linear and limited to get solution for large size problem. The 2-phase decomposition model is suggested for efficiency and computation, where in the first phase target area is divided into sectors for deconfliction and in the second phase aircrafts and weapons are assigned to given targets for minimizing expected damage of aircraft. The proposed decomposition model shows outperforms the model developed for comparison in the computational experiment.

An Optimal Mission Assignment Model for Determining a Minimum Required Level of Nuclear-powered Submarines (원자력 추진 잠수함 최소 소요량 결정을 위한 임무 할당 최적화 모델)

  • Lee, Dong-Gyun;Park, Seung-Joo;Lee, Jinho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • This study first analyzes the necessity and the validity of procuring nuclear-powered submarines, and presents an optimization model as an integer program to determine a minimum required level of them. For an optimization model, we characterize a submarine's mission, ability and availability, and apply these to the model by constraints. Then, we assign the submarines available currently and the nuclear-powered submarines, that will be newly introduced, to the predefined missions over the planning time periods in a way that the number of nuclear-powered submarines be minimized. Randomly generated missions are employed to solve a mission assignment problem, and the results show that our integer programming model provides an optimal solution as designed, and this can provide a guideline for other weapon system procurement processes.

Weapon-Target Assignment Usins Genetic Algorithms (유전자 알고리즘을 이용한 무장할당)

  • 권경엽;조중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.55-58
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘을 이용한 무장할당 문제를 제안하였다. 무장할당이란 적의 공격으로부터 방어대상물의 손상을 최소화하거나 적의 공격물 또는 표적의 격추 확률이 최대가 되도록 표적에 대한 방어무기의 적절한 할당을 목적으로 하는 최적화 문제로서, 본 논문에서는 무장할당 문제에 전역 최적화의 강점을 가진 유전자 알고리즘을 적용하였다. 무장할당문제에 적합한 유전자 알고리즘 형태와 파라메타를 선정하는 방법을 제시하였고, 시뮬레이션을 통해서 기존의 전통적인 최적화 기법과의 성능 비교를 수행한 결과, 제안된 방법이 우수함을 입증하였다.

  • PDF