• Title/Summary/Keyword: Weakly supervised semantic segmentation

Search Result 2, Processing Time 0.02 seconds

Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model (독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할)

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.227-233
    • /
    • 2019
  • Recently, along with the recent development of deep learning technique, neural networks are achieving success in computer vision filed. Convolutional neural network have shown outstanding performance in not only for a simple image classification task, but also for tasks with high difficulty such as object segmentation and detection. However many such deep learning models are based on supervised-learning, which requires more annotation labels than image-level label. Especially image semantic segmentation model requires pixel-level annotations for training, which is very. To solve these problems, this paper proposes a weakly-supervised semantic segmentation method which requires only image level label to train network. Existing weakly-supervised learning methods have limitations in detecting only specific area of object. In this paper, on the other hand, we use multi-classifier deep learning architecture so that our model recognizes more different parts of objects. The proposed method is evaluated using VOC 2012 validation dataset.

General Local Transformer Network in Weakly-supervised Point Cloud Analysis (약간 감독되는 포인트 클라우드 분석에서 일반 로컬 트랜스포머 네트워크)

  • Anh-Thuan Tran;Tae Ho Lee;Hoanh-Su Le;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.528-529
    • /
    • 2023
  • Due to vast points and irregular structure, labeling full points in large-scale point clouds is highly tedious and time-consuming. To resolve this issue, we propose a novel point-based transformer network in weakly-supervised semantic segmentation, which only needs 0.1% point annotations. Our network introduces general local features, representing global factors from different neighborhoods based on their order positions. Then, we share query point weights to local features through point attention to reinforce impacts, which are essential in determining sparse point labels. Geometric encoding is introduced to balance query point impact and remind point position during training. As a result, one point in specific local areas can obtain global features from corresponding ones in other neighborhoods and reinforce from its query points. Experimental results on benchmark large-scale point clouds demonstrate our proposed network's state-of-the-art performance.