• 제목/요약/키워드: Weak localization

검색결과 58건 처리시간 0.018초

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

LOCALIZATION OF THE VORTICITY DIRECTION CONDITIONS FOR THE 3D SHEAR THICKENING FLUIDS

  • Yang, Jiaqi
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1481-1490
    • /
    • 2020
  • It is obtained that a localization of the vorticity direction coherence conditions for the regularity of the 3D shear thickening fluids to an arbitrarily small space-time cylinder. It implies the regularity of any geometrically constrained weak solution of the system considered independently of the type of the spatial domain or the boundary conditions.

조화 외력을 받는 간단한 주기적 구조물의 동적 응답 국부화 (Dynamic Response Localization of Simple Periodic Structures Undertaking External Harmonic Forces)

  • 김재영;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.175-180
    • /
    • 2001
  • Dynamic response localization of simple mistuned periodic structures is presented in this paper Mistuning in periodic structures can cause forced responses that are much larger than those of perfectly tuned structures. So mistuning results in the critical impact on high cycle fatigue of structures. Thus, it is of great importance to predict the mistuned forced response in an efficient way. In this paper, forced responses of coupled pendulum systems are investigated to identify the localization effect of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is found that certain conditions of mistuning and coupling can cause strong localization and the localization becomes significant under weak damping. It is also found that the maximum forced response increases as the number of Periodic structures increases.

  • PDF

지점 위에 질량과 강성이 큰 연결기를 갖는 다경간 보의 모드편재 (Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports)

  • Dong-Ok Kim;Sun-Kyu Park;In-Won Lee
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1166-1171
    • /
    • 1998
  • 본 연구에서는 이웃한 두 경간 사이에 있는 질량과 강성을 갖는 연결기가 모드편재에 미치는 영향을 해석적으로 분석하고 수치예제를 통해 그 결과를 검증하였다. 연결기의 강성이 구조물의 모든 고유모드를 모드편재에 민감하게 만드는 반면 연결기의 질량은 고차모드의 민감도를 심각히 증가시킨다. 또한 본 연구에서는 일부 고유모드에서 새로운 형태의 반편재현상을 관찰하였다. 반편재현상이 발생하는 모드에서는 경간 사이의 연성이 매우 약하고 구조 변화가 심각하게 발생하더라도 모드편재 현상이 발생하지 않거나 발생하더라도 매우 미약하게 나타난다. 해석적 분석에서는 연결기를 사이에 두고 있는 두개의 부구조물을 단순화 시킨 강성-질량 시스템을 대상으로 하였다. 수치예제에서는 중간 지점에 회전강성과 회전질량을 갖으며 단순지지된 이경간 연속보를 해석하였다.

  • PDF

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

외력을 받는 주기적 구조물의 진동 국부화 (Vibration Localization of a Periodic Structure Undertaking External Force)

  • 김재영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.543-548
    • /
    • 2000
  • Vibration localization of a periodic structure with mistuning is presented in this paper. Mistuning in periodic structures can lead to an increase of the forced response which is much larger than those of perfectly tuned assembly. Thus, mistuning has a critical impact on high cycle fatigue in structures, and it is of great importance to predict the mistuned forced response in efficient manner. In this paper, forced response of a coupled pendulum is investigated to identify localization effects of periodic structures. The effects of mistuning and damping on the maximum forced response are examined. It is seen that in certain condition of mistuning and coupling, strong localization occurs and this can be significant under weak damping.

  • PDF

EpiLoc: Deep Camera Localization Under Epipolar Constraint

  • Xu, Luoyuan;Guan, Tao;Luo, Yawei;Wang, Yuesong;Chen, Zhuo;Liu, WenKai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2044-2059
    • /
    • 2022
  • Recent works have shown that the geometric constraint can be harnessed to boost the performance of CNN-based camera localization. However, the existing strategies are limited to imposing image-level constraint between pose pairs, which is weak and coarse-gained. In this paper, we introduce a pixel-level epipolar geometry constraint to vanilla localization framework without the ground-truth 3D information. Dubbed EpiLoc, our method establishes the geometric relationship between pixels in different images by utilizing the epipolar geometry thus forcing the network to regress more accurate poses. We also propose a variant called EpiSingle to cope with non-sequential training images, which can construct the epipolar geometry constraint based on a single image in a self-supervised manner. Extensive experiments on the public indoor 7Scenes and outdoor RobotCar datasets show that the proposed pixel-level constraint is valuable, and helps our EpiLoc achieve state-of-the-art results in the end-to-end camera localization task.

나노패턴된 기판 위에서의 그래핀의 비등방성 전자 수송 특성 (Anisotropic Electronic Transport of Graphene on a Nano-Patterned Substrate)

  • 칼릴 하피츠;켈렉시 오즈구르;노화용;시에 야홍
    • 한국진공학회지
    • /
    • 제21권5호
    • /
    • pp.279-285
    • /
    • 2012
  • 주기적인 나노트랜치 패턴이 있는 기판 위에 놓인 CVD 그래핀의 전도특성을 측정하였다. 나노트랜치에 대해 평행한 방향과 수직한 방향 사이에 전도특성의 큰 비등방성을 발견하였다. 전기 전도의 방향이 나노트랜치에 수직한 경우, 약한 한곳모임의 특성에 있어서도 큰 차이점이 발견되었는데, 이는 퍼텐셜 변조에 의해 생겨나는 전하밀도의 비균일성에 의해 생겨나는 것으로 해석된다.