• 제목/요약/키워드: WeOCR

검색결과 165건 처리시간 0.028초

A Keyword Matching for the Retrieval of Low-Quality Hangul Document Images

  • 나인섭;박상철;김수형
    • 한국문헌정보학회지
    • /
    • 제47권1호
    • /
    • pp.39-55
    • /
    • 2013
  • It is a difficult problem to use keyword retrieval for low-quality Korean document images because these include adjacent characters that are connected. In addition, images that are created from various fonts are likely to be distorted during acquisition. In this paper, we propose and test a keyword retrieval system, using a support vector machine (SVM) for the retrieval of low-quality Korean document images. We propose a keyword retrieval method using an SVM to discriminate the similarity between two word images. We demonstrated that the proposed keyword retrieval method is more effective than the accumulated Optical Character Recognition (OCR)-based searching method. Moreover, using the SVM is better than Bayesian decision or artificial neural network for determining the similarity of two images.

한글 문자 인식에서의 오인식 문자 교정을 위한 단어 학습과 오류 형태에 관한 연구 (A Study on Word Learning and Error Type for Character Correction in Hangul Character Recognition)

  • 이병희;김태균
    • 한국정보처리학회논문지
    • /
    • 제3권5호
    • /
    • pp.1273-1280
    • /
    • 1996
  • 본 논문에서는 문자 인식 과정을 거치고 난 후에 발생하게 되는 오인식된 문자들 을 언어적 지식을 이용하여 교정하는 문자 인식 후처리에 관하여 논한다. 문자 인식의 오인식 교정시스템의 경우 후보 단어가 많을 때 많은 후보 단어중에서 가장 적당한 단어를 후보 단어로 올려주기 위해서는 여러 가지 정보가 필요하다. 본 논문에서는 이러한 정보로 이용할 수 있는 것으로 단어들의 특성과, 문자 인식에 발생하는 오인식 형태, 단어 학습에 관하여 논한다. 이를 위한 실험으로 15 만여의 단어가 수록된 국어 사전을 이비력하고 초중고 국어교과서에 나타난 단어 들의 사용빈도를 조사하여 국어 사전에 등록된 단어 중에서 10.7%정도가 실제 초중고 국어교과서에 사용되고 있다는 것을 알 수 있었다. 또한 실제 문자 인식 시스템들을 가지고 여러 문서를 입력하고 인식하여 오인식이 자주 일어나는 글자들 의 형태를 분류하여 보았다. 그리고 한국어 처리 관련 서적이나 논문을 처리하고자 한국어에 관련된 책의 찾아보기에 나타난 단어 를 학습시켜 후보 단어들의 다른 인하여 정확한 단어를 예측하기 힘들던 문제를 해결 하고자 하였다.

  • PDF

HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할 (Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models)

  • 김형우;장선웅;박수호;공신우;곽지우;김진수;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.913-924
    • /
    • 2022
  • 이 연구에서는 국내 연안어장을 대상으로 조식동물 및 서식지에 대한 수중영상 기반의 인공지능 학습자료를 구축하고, state-of-the-art (SOTA) 모델인 High Resolution Network-Object Contextual Representation(HRNet-OCR)과 Shifted Windows-L (Swin-L)을 이용하여, 조식동물 서식지 수중영상의 의미론적 분할을 수행함으로써 화소 또는 화소군 간의 공간적 맥락(상관성)을 반영하는 보다 실제적인 탐지 결과를 제시하였다. 조식동물 서식지인 감태, 모자반의 수중영상 레이블 중 1,390장을 셔플링(shuffling)하여 시험평가를 수행한 결과, 한국수산자원공단의 DeepLabV3+ 사례에 비해 약 29% 향상된 정확도를 도출하였다. 모든 클래스에 대해 Swin-L이 HRNet-OCR보다 판별율이 더 좋게 나타났으며, 특히 데이터가 적은 감태의 경우, Swin-L이 해당 클래스에 대한 특징을 더 풍부하게 반영할 수 있는 것으로 나타났다. 영상분할 결과 대상물과 배경이 정교하게 분리되는 것을 확인되었는데, 이는 Transformer 계열 백본을 활용하면서 특징 추출능력이 더욱 향상된 것으로 보인다. 향후 10,000장의 레이블 데이터베이스가 완성되면 추가적인 정확도 향상이 가능할 것으로 기대된다.

A Novel Character Segmentation Method for Text Images Captured by Cameras

  • Lue, Hsin-Te;Wen, Ming-Gang;Cheng, Hsu-Yung;Fan, Kuo-Chin;Lin, Chih-Wei;Yu, Chih-Chang
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.729-739
    • /
    • 2010
  • Due to the rapid development of mobile devices equipped with cameras, instant translation of any text seen in any context is possible. Mobile devices can serve as a translation tool by recognizing the texts presented in the captured scenes. Images captured by cameras will embed more external or unwanted effects which need not to be considered in traditional optical character recognition (OCR). In this paper, we segment a text image captured by mobile devices into individual single characters to facilitate OCR kernel processing. Before proceeding with character segmentation, text detection and text line construction need to be performed in advance. A novel character segmentation method which integrates touched character filters is employed on text images captured by cameras. In addition, periphery features are extracted from the segmented images of touched characters and fed as inputs to support vector machines to calculate the confident values. In our experiment, the accuracy rate of the proposed character segmentation system is 94.90%, which demonstrates the effectiveness of the proposed method.

A Fast Algorithm for Korean Text Extraction and Segmentation from Subway Signboard Images Utilizing Smartphone Sensors

  • Milevskiy, Igor;Ha, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • 제5권3호
    • /
    • pp.161-166
    • /
    • 2011
  • We present a fast algorithm for Korean text extraction and segmentation from subway signboards using smart phone sensors in order to minimize computational time and memory usage. The algorithm can be used as preprocessing steps for optical character recognition (OCR): binarization, text location, and segmentation. An image of a signboard captured by smart phone camera while holding smart phone by an arbitrary angle is rotated by the detected angle, as if the image was taken by holding a smart phone horizontally. Binarization is only performed once on the subset of connected components instead of the whole image area, resulting in a large reduction in computational time. Text location is guided by user's marker-line placed over the region of interest in binarized image via smart phone touch screen. Then, text segmentation utilizes the data of connected components received in the binarization step, and cuts the string into individual images for designated characters. The resulting data could be used as OCR input, hence solving the most difficult part of OCR on text area included in natural scene images. The experimental results showed that the binarization algorithm of our method is 3.5 and 3.7 times faster than Niblack and Sauvola adaptive-thresholding algorithms, respectively. In addition, our method achieved better quality than other methods.

디지털 도서관(圖書館)과 정보관리 (Digital Library and Information Management)

  • 김순자
    • 정보관리연구
    • /
    • 제26권1호
    • /
    • pp.16-51
    • /
    • 1995
  • 정보관리 분야에서는 컴퓨터와 정보 네트워크의 발달, 그리고 초고속 정보통신망 구축과 같은 환경변화로 인하여 새로운 시대를 맞이하고 있다. 이러한 변화의 시대에 정보의 중요성과 새로운 정보기술의 발달, 정보이용자들의 주변환경 변화를 인식하게 됨에 따라 디지털 도서관(digital library)을 구상하게 되었다. 본고에서는 새롭게 등장한 디지털 도서관의 개념과 기능을 알아보고, CD-ROM, OCR 기법과 이미지 스캐닝, hypertext, hypermedia, multimedia와 같은 정보기술에 대해서 살펴보았다. 또한 이러한 기술을 응용한 시스템 사례를 살펴봄으로써 정보관리 분야에서 새로운 전자정보 서비스를 위한 전략과 정보의 디지털 화를 위한 응용가능성을 살펴보고자 한다.

  • PDF

반려동물 질병예측서비스 및 통합관리 어플리케이션 (Pet Disease Prediction Service and Integrated Management Application)

  • 표기두;이동영;정원세;권오준;한경숙
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.133-137
    • /
    • 2023
  • 본 논문에서는 반려동물 AI 진단, 동물병원 찾기, 스마트 가계부, 커뮤니티 기능을 하나로 모은 '반려동물 종합관리 어플리케이션'을 개발하였다. 해당 어플리케이션은 여러 기능을 각각의 다른 어플리케이션으로 사용해야 하는 사용자의 불편함을 해소할 수 있으며, 사진을 통해 쉽게 반려동물 AI 진단 서비스를 이용할 수 있고, 크롤링을 이용한 동물병원 정보 제공과 주변의 동물병원 찾기, OCR 텍스트 추출 기법으로 영수증을 스캔할 수 있는 스마트 가계부, 어플리케이션 사용자 간의 커뮤니티 기능을 지원한다. 본 어플리케이션을 사용함으로써 반려동물의 건강, 소비내역 등 양육에 필요한 정보를 하나의 시스템으로 관리할 수 있게 된다.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

UAV 기반 외래거북 탐지를 위한 광학문자 인식(OCR)의 가능성 평가 (Feasibility of Optical Character Recognition (OCR) for Non-native Turtle Detection)

  • 임태양;김지윤;김휘문;강완모;송원경
    • 한국환경복원기술학회지
    • /
    • 제25권5호
    • /
    • pp.29-41
    • /
    • 2022
  • Alien species cause problems in various ecosystems, reduce biodiversity, and destroy ecosystems. Due to these problems, the problem of a management plan is increasing, and it is difficult to accurately identify each individual and calculate the number of individuals, especially when researching alien turtle species such as GPS and PIT based on capture. this study intends to conduct an individual recognition study using a UAV. Recently, UAVs can take various sensor-based photos and easily obtain high-definition image data at low altitudes. Therefore, based on previous studies, this study investigated five variables to be considered in UAV flights and produced a test paper using them. OCR was used to monitor the displayed turtles using the manufactured test paper, and this confirmed the recognition rate. As a result, the use of yellow numbers showed the highest recognition rate. In addition, the minimum threat distance was confirmed to be 3 to 6m, and turtles with a shell size of 6 to 8cm were also identified during the flight. Therefore, we tried to propose an object recognition methodology for turtle display text using OCR, and it is expected to be used as a new turtle monitoring technique.

골프 동영상에서의 강건한 선수명 인식 (Robust Recognition of a Player Name in Golf Videos)

  • 정철곤;김중규
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.659-662
    • /
    • 2008
  • 스포츠의 경기에서 비디오 문자는 득점이나 선수명과 같은 중요한 정보를 제공한다. 본 논문에서는 골프 동영상에서 선수명 정보를 강건하게 인식하는 방법을 제안한다. 골프 경기의 경우, 원하는 선수의 플레이 장면을 검색하고자 하는 요구가 많은 스포츠 종목이다. 이러한 기능을 구현하기 위해 골프 동영상에 포함된 문자 정보를 이용한다. OCR 에 의해 검출된 문자 정보를 인식한 후, 사전 등록된 선수명 DB 를 이용해 선수명 정보를 인식한다. 이렇게 획득된 선수명 정보를 이용해 원하는 선수의 플레이 장면을 검색할 수 있도록 하였다. 다양한 골프 동영상에 대하여 실험을 수행한 결과, 본 논문에서 제안한 방법이 강건하게 선수명을 인식하는 것을 확인하였다.

  • PDF