• Title/Summary/Keyword: Wax

Search Result 849, Processing Time 0.022 seconds

A Study on Synthesis and Mechanical Properties of Wax-Impregnated Nylon 6 (왁스(wax) 함침형 나일론 6의 합성과 그의 기계적 성질에 관한 연구)

  • 강석춘;정대원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.268-277
    • /
    • 1999
  • In order to make an advanced dry-friction engineering material, wax-impregnated nylons were synthesized by anionic polymerization of $\varepsilon$-caprolactam in the presence of apraffin wax. DNX-125S, which has lowest melting point among four different kinds of waxs investigated, showed excellent miscibiility with $\varepsilon$-carprolactam and no effect on the polymerization reaction. Five different kinds of wax-impregnated nylons from of DNW-125S content 0% to 8% were synthesized and tested. Among the samples, wax-free nylon has the highest yield and tensile strength and hardness, while the specimen with2% wax has the largest elongationi and energy absorption to break. The wax-impregnated nylon with a wax content 6% showdd the smallest friction coefficient under slow sliding speed and low load. Bus as the sliding speeds were increased to high, thespcieimen with 8% wax has better friction property.

  • PDF

CONTROL OF HARDNESS OF OIL-WAX GELS BY A NOVEL BRANCHED WAX AND APPLICATION TO LIPSTICKS

  • Yoshida, K.;Shibata, M.;Ito, Y.;Nakamura, G.;Hosokawa, H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.469-479
    • /
    • 2003
  • A novel branched wax has been developed for the control of the hardness of oil-wax gels. Using this wax, glossier application and smoother texture but tough lipstick can be obtained. Oil-wax gels are oily solids composed of liquid and crystalline solid oils (waxes). They are widely used in various cosmetic products, especially lipsticks. The control of gel hardness is one of the most important techniques in improvement of the lipstick quality. Addition of small amounts of commercial branched paraffin wax (e.g. microcrystalline wax, b-PW) to n-paraffin wax (n-PW) has been commonly used to increase gel hardness. However, gel hardness is very sensitive to the quantity of b-PW and the gel obtained is not always hard enough for practical use. In this study we examined the relationship between the gel hardness and the properties of the wax crystal in the gel. We have found that, when b-PW is added to n-PW, the wax crystal size becomes smaller (hardening the gels) and its crystallinity is decreased (softening the gels) simultaneously. Considering this result, we have developed a novel branched wax, Bis(polyethylenyl)- tetramethyldisiloxane (named ESE). ESE molecules are composed of a central tetramethyldisiloxane unit (branch unit) with polyethylene units at both ends. The central unit may suppress crystal growth while the ends are expected to prevent a decrease in wax crystallinity during crystallization. When ESE is added to n-PW, the wax crystal obtained becomes smaller without decreasing in crystallinity; consequently, the gel hardness is dramatically increased. By using ESE, the total amount of wax in a lipstick can be decreased by 30% without spoiling the stick toughness, thereby achieving glossy application and smooth texture.

  • PDF

A study on Thermal expansion of Inlay waxes (Inlay wax의 열팽창에 관한 연구)

  • Nam, Sang-Yong;Kwak, Dong-Ju;Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • The purpose of this study was to observe the thermal expansion of the inlay waxes at temperature. Inlay pattern wax shows not only a high coefficient of expansion but also a tendency to warp or distort when allowed to stand unrestrained. The thermal expansion of inlay waxes was tested according to the treatment conditions for 10 minutes at $40^{\circ}C$ The thermal expansion of inlay waxes at various temperatures was measured with an electro dial gauge. The results were as fellows: 1. It is shown that the rate of thermal expansion of wax A is 0.2%, wax B is 0.29%, wax C is 0.38%, and wax D is 0.22% at $40^{\circ}C$ 2. It is shown that the coefficient of thermal expansion of wax A is $106{\times}10^{-6}/^{\circ}C$, wax B is $152{\times}10^{-6}/^{\circ}C$, wax C is $199{\times}10^{-6}/^{\circ}C$, and wax D is $116{\times}10^{-6}/^{\circ}C$ at $40^{\circ}C$ 3. The thermal expansion of the inlay waxes at $40^{\circ}C$ was shown to increase in the order of wax C, B, D, A.

  • PDF

The Study of Restoration Technique of Wax-treated Volume for the Annals of the Joseon Dynasty(I) - Evaluation of degradation behavior of reproduced waxy paper - (조선왕조실록 밀랍본 복원기술연구(제1보) - 재현밀랍지의 열화거동평가 -)

  • Jeong, Seon-Hwa;Jeong, So-Young;Seo, Jin-Ho;Lee, Hye-Yun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.56-63
    • /
    • 2007
  • The purpose of this research was to identify causes of damage of wax-treated volume of "The Annals of the Joseon Dynasty". As one of the efficient restoration methods, analyses of damaged state of reproduced wax-treated paper through tests of degradation of wax-treated paper under an artificial setting were performed, and in particular, differences between lightness and acidity were observed. On the whole, it was confirmed that yellow wax-treated papers were more stable than white wax-treated papers against artificial aging treatment, which is thought to be because the white wax-treated paper was more affected by a variety of substances interacting with paper than yellow wax-treated paper under artificially aged conditions, which were added in the course of refinement and processing operation such as decolorization and deodorization.

Evaluation of the Effect of PE Wax on Asphalt Binder Properties (PE Wax를 첨가한 아스팔트 바인더의 물리적 특성)

  • Kim, Boo-Il;Jeon, Sung-Il;Lee, Moon-Sup;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.101-113
    • /
    • 2006
  • Generally, asphalt binder modifier increases the viscosity at high temperature as well as at mixing and paving temperature, so that higher temperature is required to produce the hot-mix asphalt. Otherwise, wax is able to improve workability by means of decreasing the viscosity of asphalt binder. In this study, the effect of PE wax used to modify the asphalt binder was evaluated in laboratory. The properties of PE wax modified binder were compared with those of SBS and Crumb Rubber Modified binders. The results showed that wax type I has an effect on strengthening rut resistance as well as improving workability. However, wax type I weaken crack resistance due to making binder harder at intermediate temperature. The results also showed that wax type II has an effect on improving workability and on strengthening crack resistance due to making binder softer.

  • PDF

A Study on the Development and Application of Perilla Oil Based Compound Wax Agent for Preserving Outdoor Metal Sculpture: A Case Study on Iron Sculptures (들기름 기반 야외 금속 조형물 보존용 혼합 Wax의 개발 및 적용성에 관한 연구: 철제 조형물 중심으로)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2017
  • The currently used wax agents for preserving outdoor metal structures, despite their advantages, have disadvantages such as low endurance and reliability. These wax agents are easily damaged by acid rain, dust, moisture in the air, yellow dust, and air pollutants, resulting in corrosion within a short period after the initial conservation treatment. In addition, aged wax can also exhibit changes in the color or gloss, and also give a sense of difference in the surface. Given these existing problems, it is necessary to develop improved materials for metal preservation. Therefore, this study analyzed the characteristics and applications of the existing wax coating agents in order to identify their disadvantages and to develop a better material for metal preservation. In this regard, this study developed a perilla oil based compound wax and conducted experiments to test its endurance. The new compound wax agent was exposed to outdoor and acid rain conditions: it showed four times and 1.5 times the endurance of the existing wax agents in outdoor and acid rain conditions, respectively. In addition, the new agent seems to be more durable and protective as evidenced by the chromaticity, polish maintenance, and contact angle results. Further, although it is 1.3-1.8 times thicker than the existing agents, the new agent shows a more even surface. Based on these findings, it can be concluded that the new compound wax agent based on perilla oil is a better alternative to the existing was coating agents.

Curing and Surface Properties of UV-curable Coating Containing Wax (왁스를 함유한 자외선 경화형 코팅제의 경화 및 표면 물성)

  • Han, A-Ram;Kim, Jong-Gu;Hong, Jin-Who;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.38-44
    • /
    • 2012
  • Surface properties and curing behavior of UV-initiated photopolymerization with and without wax have been investigated by pendulum hardness, pencil hardness, gloss, photo-differential scanning calorimetry (photo-DSC) and SEM. In addition, the influence of wax type (paraffin wax, PE wax) on the various properties of UV cured films was studied. The results showed that the wax type was the significant factor affecting gloss and surface hardness of UV cured films. Specially, the photo-DSC results showed that ${\Delta}H$ for the UV cured films containing paraffin wax was higher than the corresponding values for the formulation without wax and with PE wax. The observed results clearly demonstrate that the photopolymerization of UV curing with paraffin wax in an air atmosphere is less inhibited by the oxygen compared to UV curing without wax and with PE wax.

Shape comparison of Wax-up carved crown and CAD-designed crown (Wax-up으로 조각한 치관과 CAD로 설계한 치관의 형태 비교)

  • Kim, Kap-Jin
    • Journal of Technologic Dentistry
    • /
    • v.39 no.2
    • /
    • pp.93-99
    • /
    • 2017
  • Purpose: With the development of digital dental technology, we are manufacturing prosthetic crown in various ways. However, the wax-up method that makes existing prosthetic crown is also used steadily. Thus, we will compare the shape of the crown designed with wax-up and the crown designed with CAD. Methods: Sculpt the crown with wax-up on the model to 10 dental technicians. The same model was used to design the crown CAD. Measure the size of the sculpted crown. The shapes were compared in three dimensions. Results: As a result, we could observe a difference in size and shape in crown designed with wax - up crown and crown. Conclusion: These results suggest that there are differences according to the method of carving crown and the method of processing.

Effect of the Sequence of Wax Addition, Wax Level and Type on Properties of Isocyanate-Bonded Particleboard (왁스첨가(添加) 순서(順序), 첨가량(添加量), 종류(種類)가 Isocyanate 접착(接着) PB의 성질(性質)에 미치는 영향(影響))

  • Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.70-76
    • /
    • 1995
  • Research was conducted at the Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA to evaluate the effects of the sequence of wax addition, wax level, and wax type on mechanical properties and water resistance performance of isocyanate-bonded particleboard. Mechanical properties and water resistance performance were not influenced significantly by the sequence of wax addition. Internal bond and wet modulus of rupture in bending strength were decreased significantly by increasing the wax emulsion level, but dry modulus of rupture and modulus of elasticity in bending strength were not decreased significantly by increasing the wax emulsion level. Dry internal bond, dry and wet moduli of rupture, and modulus of elasticity were not decreased by increasing the solid wax level except for wet internal bond. The addition of 1.0 and 1.5% wax level did not produce any significant additional water resistance effect when compared to the addition of 0.5% wax level. Internal bond values of boards with solid wax addition showed significantly better results than boards with just a wax emulsion added. Modulus of rupture, modulus of elasticity, and water resistance performance did not show significant difference between solid wax and wax emulsion.

  • PDF

OBSERVATION OF THE SWEATING IN LIPSTICK BY SCANNING ELECTION MICROSCOPY

  • Seo, Su-Youn;Lee, In-Sook;Sin, Hyeon-Jong;Choi, Kyu-Yeol;Kang, She-Hoon;Ahn, Ho-Jeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.182-192
    • /
    • 1996
  • In this study, the relationship between wax matrix in lipstick and sweating was investigated by observing the change of size and shape of wax matrix with sweating by Scanning Electron Microscopy (SEM). For observation by SEM, a lipstick sample was frozen in liquid nitrogen, then the oil in the lipstick was extracted out in cold isopropanol($-70^{\circ}C$) for 1-3days. After isopropanol was evaporated, the sample was sputtered with gold, and examined by SEM. When examined the sweated sample by SEM, the change of wax matrix underneath the surface from fine, uniform structure to coarse, nonuniform structure was observed, which was resulted from the caking of surrounding wax matrix. That is, the oil underneath the surface was migrated to the surface of lipstick with sweating, consequently the wax matrix at that region was rearranged into the coarse matrix. In case of flamed lipstick, sweating was delayed and the wax matrix was much coarser than that of unflamed one. Its larger wax matrix at surface region was good for including oil. The effect of molding temperature on sweating was also studied. As the molding temperature was increased, sweating was greatly reduced and the size of wax matrix was increased. It was also found that sweating was influenced with the compatinility of wax and oil. A formula consisting of wax and oil which have good compatibility has a tendency of reduced sweating and increased size of wax matrix. When pigment was added to wax and oil. It was also found that sweating was influenced with the passage of time by observing a thick membrane of wax on surface of lipstick after a month from molding. In case of some lipsticks, the size of wax matrix was altered to bigger or smaller. In conclusion, the structure of wax matrix at the surface region of lipstick was changed with the process of foaming, molding temperature, compatibility of wax and oil, addition of pigment, and the passage of time. In most cases, as the size of wax matrix was increased, sweating was reduced and delayed.

  • PDF