• Title/Summary/Keyword: Wavy Film

Search Result 30, Processing Time 0.028 seconds

A study on the flow characteristics of laminar wavy film (층류파형 액막의 유동특성에 관한 연구)

  • Kim, Jin-Tae;Lee, Gye-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.628-636
    • /
    • 1997
  • Flow visualization technique incorporating photochromic dye is used to study the flow characteristics of the gravity driven laminar wavy film. The film thickness and wave speed are successfully measured by flow visualization. As the inclination angle increases, the waves have higher peaks and lower substrate thickness. The measured cross stream velocity at the free surface is up to 10% of stream wise velocity, which shows enhanced mixing in the lump of the film. The measured stream wise velocity profiles are close to parabolic profile near the substrate and the peak but show significant velocity defect near the rear side of the wave. The measured wall shear rate distributions show good agreement with the previous workers' numerical results.

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal (코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Velocity and Temperature Profiles of Steam-Air Mixture on the Film Condensation (막응축 열전달에서 공기-수증기 혼합기체의 속도 및 온도분포)

  • 강희찬;김무환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2675-2685
    • /
    • 1994
  • A study has been conducted to provide the experimental information for the velocity and temperature profiles of steam-air mixutre and to investigate their roles on the film condensation with wavy interface. Saturated gas mixture of steam-air was made to flow through the nearly horizontal$(4.1^{\circ})$ square duct of 0.1m width and 1.56m length at atmospheric pressure, and was condensated on the bottom cold plate. The air mass fraction in the gas mixture was changed from zero(W =0, pure steam) to one(W =1, pure air), and the bulk velocity was varied from 2 to 4 m/s. Water film was injected concurrently to investigate the effect of wavy interface on the condensation. The velocity and temperature profiles were measured by LDA system and thermocouples along the three parameters ; air mass fraction, mixture velocity and film flow rate. The profiles moved toward the interface with increasing steam mass fraction, mixture velocity and film flow rate. The Prandtl and Schmidt numbers were near one in the present experimental range, however there was no complete similarity between the velocity and temperature profiles of gas mixture. And the heat transfer characteristics and interfacial structure were coupled with each other.

Film Boiling Heat Transfer from Relatively Large Diameter Downward-facing Hemispheres

  • Kim Chan Soo;Suh Kune Y.;Park Goon Cherl;Lee Un Chul;Yoon Ho Jun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.274-285
    • /
    • 2003
  • Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Loop for Transient Analysis). Two test sections are made of copper to maintain Bi below 0.1. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of both the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the two test sections. The measured heat transfer coefficients for the test section with diameter 120 mm lie within the bounding values from the laminar film boiling analysis, while those for diameter 294 mm are found to be greater than the numerical results on account of the Helmholtz instability. There is little difference observed between the film boiling heat transfer coefficients measured from the two test sections. In addition, the higher thermal conductivity of copper results in the higher minimum heat flux in the tests. For the test section of diameter 120 mm, the Leidenfrost point is lower than that for the test section of diameter 294 mm. Destabilization of film boiling propagates radially inward for the 294 mm test section versus radially outward for the 120 mm Test Section.

Characteristics of a PZT-Driven Micro Depth Adjustment Device for Cutting Coated Film (박막 절단용 PZT 구동 미세깊이 조절 장치의 특성)

  • Ryu, Sang-Oh;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.630-635
    • /
    • 2014
  • This study aims to develop a PZT-driven depth adjustment device with a flexure hinge and to investigate its static/dynamic characteristics. This device will be applied to rapidly and accurately trace a flat surface with slight waviness of up to several hundreds of micrometers in magnitude. One typical example is to cut a film coated on a steel plate. A depth control system composed of PMAC, PZT/PZT amplifier, flexure hinge/knife, and laser displacement sensor is implemented on a desktop three-axis machine and an actual cutting test is conducted on a steel workpiece with a sinusoidal-wavy surface. It is verified that the dynamic characteristics of the device limit the maximum cutting speed and depth precision.

Numerical Analysis for Conductance Probes, for the Measurement of Liquid Film Thickness in Two-Phase Flow

  • No, Hee-Cheon;F. Mayinger
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.450-455
    • /
    • 1995
  • A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively.

  • PDF