• Title/Summary/Keyword: Wavelet Neural Network

Search Result 342, Processing Time 0.025 seconds

Channel Equalization for QAM Signal Constellation Using Wavelet Transform and Neural Network

  • Lee, Seok-Won;Nam, Boo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.147-147
    • /
    • 2000
  • Recently, a considerable amount of attention is being given to the use of wavelets and neural network for modulation and equalization. We proposed a new scheme of equalization for constellation using discrete wavelet transform(DWT) and neural network. The DWT is used for noise reduction and the neural network is used to update the equalizer coefficients adaptively.

  • PDF

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

Self-Recurrent Wavelet Neural Network Based Direct Adaptive Control for Stable Path Tracking of Mobile Robots

  • You, Sung-Jin;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.640-645
    • /
    • 2004
  • This paper proposes a direct adaptive control method using self-recurrent wavelet neural network (SRWNN) for stable path tracking of mobile robots. The architecture of the SRWNN is a modified model of the wavelet neural network (WNN). Unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. For this ability of the SRWNN, the SRWNN is used as a controller with simpler structure than the WNN in our on-line control process. The gradient-descent method with adaptive learning rates (ALR) is applied to train the parameters of the SRWNN. The ALR are derived from discrete Lyapunov stability theorem, which are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the effectiveness and stability of the proposed controller.

  • PDF

Adaptive Structure of Modular Wavelet Neural Network (모듈환된 웨이블렛 신경망의 적응 구조 설계)

  • 서재용;김성주;조현찬;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.782-787
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angel criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. There criteria provide a methodology that a network designer can constructs wavelet neural network according to one s intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristics of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect (웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구)

  • Kim, Seong-Hoon;Lee, Kang-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.

  • PDF

Design the Structure of Scaling-Wavelet Mixed Neural Network (스케일링-웨이블릿 혼합 신경회로망 구조 설계)

  • Kim, Sung-Soo;Kim, Yong-Taek;Seo, Jae-Yong;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.511-516
    • /
    • 2002
  • The neural networks may have problem such that the amount of calculation for the network learning goes too big according to the dimension of the dimension. To overcome this problem, the wavelet neural networks(WNN) which use the orthogonal basis function in the hidden node are proposed. One can compose wavelet functions as activation functions in the WNN by determining the scale and center of wavelet function. In this paper, when we compose the WNN using wavelet functions, we set a single scale function as a node function together. We intend that one scale function approximates the target function roughly, the other wavelet functions approximate it finely During the determination of the parameters, the wavelet functions can be determined by the global search for solutions suitable for the suggested problem using the genetic algorithm and finally, we use the back-propagation algorithm in the learning of the weights.

Transmission of Moving Image on the Internet Using Wavelet Transform and Neural Network (웨이블릿변환과 신경회로를 이용한 동영상의 실시간 전송)

  • Kim, Jeong-Ha;Lee, Hak-No;Nam, Boo-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1077-1081
    • /
    • 2004
  • In this Paper we discuss an algorithm for a real-time transmission of moving color image on the TCP/IP network using wavelet transform and neural network. The Image frames received from the camera are two-level wavelet-transformed in the server, and are transmitted to the client on the network. Then, the client performs the inverse wavelet-transform using only the received pieces of each image frame within the prescribed time limit to display the moving images. When the TCP/IP network is busy, only a fraction of each image frame will be delivered. When the line is free, the whole frame of each image will be transferred to the client. The receiver warns the sender of the condition of traffic congestion in the network by sending a special short frame for this specific purpose. The sender can respond to this information of warning by simply reducing the data rate which is adjusted with a neural network or fuzzy logic. In this way we can send a stream of moving images adaptively adjusting to the network traffic condition.

A novel Kohonen neural network and wavelet transform based approach to Industrial load forecasting for peak demand control (최대수요관리를 위한 코호넨 신경회로망과 웨이브릿 변환을 이용한 산업체 부하예측)

  • Kim, Chang-Il;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.301-303
    • /
    • 2000
  • This paper presents Kohonen neural network and wavelet transform analysis based technique for industrial peak load forecasting for the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a six-scale synthesis technique.

  • PDF

Plasma Diagnosis by Using Scanning Electron Microscope and Neural Network (신경망과 주사전자현미경을 이용한 플라즈마 진단)

  • Bae, Jung-Gi;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.96-98
    • /
    • 2006
  • A new ex-situ model to diagnose a plasma processing equipment was presented. The model was constructed by combining wavelet, scanning electron microscope, ex-situ measurement of etching profile, and neural network. The diagnosis technique was applied to a tungsten etching process, conducted in a $SF_6$ helicon plasma. The wavelet was used to characterize detailed variations of plasma-etched surface. The diagnosis model was constructed with the vertical wavelet component. For comparison, a conventional model was built by using the estimated profile data. Compared to the conventional model, the wavelet-based model, demonstrated a much improved diagnosis.

  • PDF

Short-term load forecasting using Kohonen neural network and wavelet transform (코호넨 신경회로망과 웨이브릿 변환을 이용한 단기부하예측)

  • Kim, Chang-Il;Kim, Bong-Tae;Kim, Woo-Hyun;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.239-241
    • /
    • 1999
  • This paper proposes a novel wavelet transform and Kohonen neural network based technique for short-time load forecasting of power systems. Firstly. Kohonen Self-organizing map(KSOM) is applied to classify the loads and then the Daubechies D2, D4 and D10 wavelet transforms are adopted in order to forecast the short-term loads. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of Kohonen neural network and wavelet transform approach can be used as an attractive and effective means for short-term load forecasting.

  • PDF