• 제목/요약/키워드: Wavelet Neural Network

검색결과 342건 처리시간 0.023초

웨이블렛 신경망의 성장 알고리즘 (Growing Algorithm of Wavelet Neural Network)

  • 서재용;김성주;김성현;김용민;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

웨이브릿 신경회로망의 프레임 함수를 이용한 지능시스템 (Intelligent system using frame function in wavelet neural network)

  • 홍석우;김용택;연정흠;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.195-198
    • /
    • 2000
  • We propose a new wavelet neural network structure, for which we apply new recurrent nodes to the network, in this paper for the dynamic system identification and control. We will construct the wavelet neural network by using wavelet frame function. The function does not have the best approximation property, but it may be possible to apply some modification to the structure of the network because the constriction of orthogonality is loosened a little. This wavelet neural network we propose can obtain previous state information by its structure of the network without any addition of input, though the conventional wavelet network needs additional previous state input for the improvement of the dynamic performance. In numerical experience, the performance of the new wavelet neural network we propose in the nonlinear system with uncertainity of parameter Is equal to that of the wavelet network which used the additional previous information input, superior to that of the conventional wavelet network.

  • PDF

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

F-투영법을 이용한 웨이블렛 신경망의 성장 알고리즘 (Growing Algorithm of Wavelet Neural Network using F-projection)

  • 서재용;김용택;조현찬;김용민;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(3)
    • /
    • pp.15-168
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

웨이블릿 신경 회로망을 이용한 이동 로봇의 경로 추종 제어 (Path Tracking Control Using a Wavelet Neural Network for Mobile Robots)

  • 오준섭;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2414-2416
    • /
    • 2003
  • In this raper, we present a Wavelet Neural Network(WNN) approach to the solution of the tracking problem for mobile robots that possess complexity, nonlinearity and uncertainty. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome the problems caused by local minima of optimization and various uncertainties. This network structure is helpful to determine the number of the hidden nodes and the initial value of weights with compact structure. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by the gradient-descent method. Through computer simulations, we demonstrate the effectiveness and feasibility of the proposed control method.

  • PDF

웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계 (Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network)

  • 서경철;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

모듈화된 웨이블렛 신경망의 적응 구조 (Adaptive Structure of Modular Wavelet Neural Network)

  • 서재용;김용택;김성현;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Identification and Control of Nonlinear Systems Using Haar Wavelet Networks

  • Sokho Chang;Lee, Seok-Won;Nam, Boo-Hee
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.169-174
    • /
    • 2000
  • In this paper, Haar wavelet-based neural network is described for the identification and control of discrete-time nonlinear dynamical systems. Wavelets are suited to depict functions with local nonlinearities and fast variations because of their intrinsic properties of finite support and self-similarity. Due to the orthonormal properties of Haar wavelet functions, wavelet neural networks result in a greatly simplified training problem. This wavelet-based scheme performs adaptively both the identification of nonlinear functions and the control of the overall system, while the multilayer neural network is applied to the control system just after its sufficient learning of the unknown functions. Simulation shows that the wavelet network can be a good alternative to a multilayer neural network with backpropagation.

  • PDF

벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구 (A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function)

  • 변오성;조수형;문성용
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.363-369
    • /
    • 2002
  • 본 논문은 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)과 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 소속 함수로 구성이 되었으며, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 이 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.