• Title/Summary/Keyword: Wavelength scanning

Search Result 250, Processing Time 0.027 seconds

Fabrication of the photon scanning tunneling microscope with constant intensity mode (일정광량 방식의 광자주사현미경 제작)

  • Kim, Ji-Taek;Choi, Wan-Hae;Jo, Jae-Heung;Chang, Soo;Kim, Dal-Hyun;Koo, Ja-Yong;Chung, Seung-Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 1999
  • We made sharp optical fiber tips with less than 100 nm diameter by using the heating and pulling method with a good repetition and fabricated the photon scanning tunneling microscope (PSTM) using constant intensity mode. The 3-dimensional PZT (Piezoelctric transducer) scanner made of a long PZT tube is consisted of three divided parts, that is, a pair of $\pm$ x and a pair of $\pm$y scanning parts and a z scanning part for the fine approach and scanning. The scanning dimension is 1.43 $\mu\textrm{m}$$\times$1.76 $\mu\textrm{m}$. The height of a optical tip to maintain a constant height within $1/{\lambda}_0$ (${\lambda}_0$ is the incident wavelength) from surface of a specimen to a optical tip is controlled automatically by using the electric feedback circuit. The 3-dimensional shape of standing evanescent waves generated on the surface of a dove prism was measured successfully by using the constant intensity mode PSTM.

  • PDF

Characteristics of nanolithograpy process on polymer thin-film using near-field scanning optical microscope with a He-Cd laser (He-Cd 레이저와 근접장현미경을 이용한 폴리머박막 나노리소그라피 공정의 특성분석)

  • Kwon S. J.;Kim P. K.;Chun C. M.;Kim D. Y.;Chang W. S.;Jeong S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.37-46
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a polymer film using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture($P_{in}$), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}=1.2{\mu}W\;and\;V=12{\mu}m/s$. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage is discussed.

  • PDF

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Integrated Nano Optoelectronics

  • Jo, Moon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.117-117
    • /
    • 2012
  • Si:Ge alloy semiconductor nanocrystals (NCs) offer challenging opportunities for integrated optoelectronics/optoplasmonics, since they potentially allow unprecedentedly strong light-matter interaction in the wavelength range of the optical communication. In this talk, we discuss the recent research efforts of my laboratory to develop optoelectronic components based on individual group IV NCs. We present experimental demonstration of the individual NC optoelectronic devices, including broadband Si:Ge nanowire (NW) photodetectors, intra NW p-n diodes, Ge NC electrooptical modulators and near-field plasmonic NW detectors, where the unique size effects at the nanometer scales commonly manifest themselves. In particular, we demonstrated a scanning photocurrent imaging technique to investigate dynamics of photocarriers in individual Si:Ge NWs, which provides spatially and spectrally resolved local information without ensemble average. Our observations represent inherent size-effects of internal gain in semiconductor NCs, thereby provide a new insight into nano optoplasmonics.

  • PDF

The Structural Characteristic and Surface Morphology of ZnO Thin Films by Pulsed Laser Deposition (PLD를 이용한 ZnO 박막의 구조적 특성과 표면의 형태에 관한 연구)

  • Kim, Jae-Hong;Lee, Kyoung-Cheol;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.231-234
    • /
    • 2003
  • ZnO thin films on (100) p-type silicon substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266nm. The influence of the deposition parameters, such as oxygen pressure, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for oxygen gas flow rate of 100~700 sccm and substrate temperatures in the range of 200~$500^{\circ}C$. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction(XRD), scanning electron microscopy(SEM) and atomic force microscopy(AFM).

Shape accuracy and curing characteristics of photopolymer during fabrication of three-dimensional microstructures using microstereolithography (마이크로광조형법을 이용한 미세삼차원구조물의 제조공정 중 형상정밀도 및 경화특성에 관한 연구)

  • Jung, Dae-Jun;Kim, Sung-Hoon;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • The curing characteristics of a liquid photopolymer during microstereolithography and the shape accuracy of thereby fabricated microstructures were investigated experimentally. A He-Cd laser with a wavelength of 442nm and a photopolymer consisted of a commercial resin from SK chemical and a photoinitiat or were used for the experiment. By varying the laser beam power and scanning speed of the focused laser beam, minimum curing thickness of 50 ${\mu}ㅡ$ was obtained. The distortion of solidified structure due to adhesion force was measured and the optimum fabrication conditions were determined. Also, the feasibility of direct fabrication of three-dimensional microstructures by Super IH process was examined.

Preparation and Characterization of Ultra Thin TaN Films Prepared by RF Magnetron Sputtering

  • Reddy, Akepati Sivasankar;Jo, Hyeon-Cheol;Lee, Gi-Seon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.32.1-32.1
    • /
    • 2011
  • Ultra thin tantalum nitride (TaNx) films with various thicknesses (10 nm to 40 nm) have been deposited by rf magnetron sputtering technique on glass substrates. The as deposited films were systematically characterized by several analytical techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR double beam spectrophotometer and four point probe method. From the XRD results, the as deposited films are in amorphous nature, irrespective of the film thicknesses. The films composition was changed greatly with increasing the film thickness. SEM micrographs exhibited the densely pack microstructure, and homogeneous surface covered by small size grains at lower thickness deposited films. The surface roughness of the films was linearly increases with increasing the films thickness, consequently the transmittance decreased. The absorption edge was shifted towards higher wavelength as the film thickness increases.

  • PDF

Calibration transfer between miniature NIR spectrometers used in the assessment of intact peach and melon soluble solids content

  • Greensill, Colin.V.;Walsh, Kerry.B.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1127-1127
    • /
    • 2001
  • The transfer of predictive models using various chemometric techniques has been reported for FTNIR and scanning-grating based NIR instruments with respect relatively dry samples (<10% water). Some of the currently used transfer techniques include slope and bias correction (SBC), direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT) and application of neural networks. In a previous study (Greensill et at., 2001) on calibration transfer for wet samples (intact melons) across silicon diode array instrumentation, we reported on the performance of various techniques (SBC, DS, PDS, double window PDS (DWPDS), OSC, FIR, WT, a simple photometric response correction and wavelength interpolative method and a model updating method) in terms of RMSEP and Fearns criterion for comparison of RMSEP. In the current study, we compare these melon transfer results to a similar study employing pairs of spectrometers for non-invasive prediction of soluble solid content of peaches.

  • PDF

Preparation of AZO/Ag/AZO multilayer for transparent electrode by using facing targets sputtering method (대향 타겟 스퍼터링 법을 이용한 투명전극용 AZO/Ag/AZO 다층 박막의 제작)

  • Cho, Bum-Jin;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.290-291
    • /
    • 2006
  • We prepared the multilayer with Al doped ZnO (AZO)/Ag/AZO structure. The multilayer were deposited with various thickness of Ag layer on glass substrates at room temperature by using facing targets sputtering (FTS) method. To investigate the electrical, optical and structural properties, we used Hall Effect measurement system, four-point probes. UV-VIS spectrometer with a wavelength of 300 - 100nm, X-ray Diffractometer(XRD) and scanning electron microscopy (SEM). We obtained multilayer thin film with the low resistivity $5,9{\times}10^{-5}{\Omega}cm$ and the average transmittance of 86% m the visible range (400 - 800nm).

  • PDF

Surface and Optical Characteristics of Cobalt Dopped-titanium Oxide Film Fabricated by Water Spray Pyrolysis Technique (습식 분무 열분해 방법으로 제조한 코발트 도핑된 티타늄 산화막의 표면 및 광학적 특성)

  • Song Ho-Jun;Park Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Titanium dioxide films $(TiO_2)$ doped cobalt transition metal were prepared on titanium metal by water spray pyrolysis technique. Micro-morphology, crystalline structure, chemical composition and binding state of sample groups were evaluated using field emission scanning microscope(FE-SEM), X-ray diffractometer(XRD), Raman spectrometer, X-ray photoelectron spectrometer(XPS). $TiO_2$ films of rutile structure were predominately formed on all sample groups and $Ti_2O_3$ oxide was coexisted on the surface of cobalt doped-sample groups. The optical absorption peaks measured by using UV-VIS-NIR spectrophotometer were observed at specific wavelength region in sample groups doped cobalt ion. This result could be analyzed by introducing crystal field theory.