• Title/Summary/Keyword: Waveguide Sensor

Search Result 123, Processing Time 0.027 seconds

Thermo-optic Effects of Optical Temperature Sensor (광 온도센서의 열전.광 효과)

  • Lee, Kwang-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2049-2054
    • /
    • 2006
  • This paper demonstrates a comparison of linear and nonlinear analyses for thermo-optic effects of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include theoretical analyses and experiment of the etched planar waveguide Bragg grating optical temperature sensor, Theoretical models with nonlinear than linear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

Polymeric Waveguide Bio Sensors with Bragg Gratings (브래그 격자 광도파로형 바이오 센서)

  • Lee, Jae-Hyun;Kim, Gyeong-Jo;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • Biophotonic sensors based on polymer waveguide with Bragg reflection grating are demonstrated in this work. Waveguide Bragg reflectors were designed by using the effective index method and the transmission matrix method. The grating pattern was formed by exposing the laser interference pattern on a photoresist. On top of the inverted rib waveguide, the Bragg reflection grating was inscribed by the O2 plasma etching. In order to perform the bio-molecule detection experiment, a calixarene molecule was self-assembled on top of thin Au film deposited on the waveguide Bragg reflector. To measure the response of the sensor, several PBS solutions with different concentrations of potassium ion from 1 pM to $100\;{\mu}M$ were dropped on the sensor surface. The shift of Bragg reflection wavelength was observed from the fabricated sensor device, which was proportional to the concentration of potassium ion ranging from 1 pM to 108 pM.

Implementation of High Accurate Level Sensor System using Pulse Wave Type Magnetostriction Sensor (펄스파 자왜 센서를 이용한 고정밀 액위 센서 시스템의 실현에 관한 연구)

  • Choi, Woo-Jin;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.395-400
    • /
    • 2013
  • In this paper, we introduce the implementation of high accurate level sensor system using the pulse wave type magnetostriction sensor. When a current pulse flows along the waveguide, the magnetic field also propagates towards the end of waveguide. When this magnetic field just passes the position of the magnet for level detection, the resultant magnetic field by these two magnetic fields makes a torsional reflected signal. This is used to calculate the time difference between a interrogation pulse wave and this torsional reflected signal. The key elements and characteristics were investigated to implement level sensor system based on this principle. We introduce a method to calculate the speed of ultrasonic reflected signal and how to make a model of sensing coil. In particular, we experiment with the characteristics of the torsional reflected signal according to the changes of the interrogation voltage and displacement. To make high accurate level sensor system, two methods were compared. One is to use the comparator and time counter, the other is STFT(Short Time FFT) which is capable of the time-frequency analysis.

Implementation of Bio-Sensor with Coupled Plasmon-Waveguide Resonance Profile (결합된 플라즈몬-도파관 공진 구조로 구성된 바이오센서의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.109-114
    • /
    • 2024
  • The bio-sensing properties of TE and TM guided modes in the coupled plasmon-waveguide resonance (PWR) configuration are investigated. The modal transmission-line theory (MTLT) is used for numerical analysis. The proposed PWR bio-sensor is composed of multi-layered configuration with N pairs of MgF2-Si3N4 layers to enhance the sensitivity of a conventional Ag-based surface plasmon resonance bio-sensor. The angular sensitivity of bio-sensor is numerically analyzed for a wide range of biological solutions (refractive index 1.33~1.37). Furthermore, the availability of sensor to detect cancer cells and blood plasma concentration is evaluated. Finally, the results indicate that the proposed bio-sensor is capable efficiently to detect various kinds of cancer cells and different glucose concentrations in urine.

Fabrication and Characterization of PLC-based Mach-Zehnder Interferometer Sensor (PLC-기반의 마흐-젠더 간섭계 센서 제작 및 특성 평가)

  • Kim, Jun-Hyong;Yang, Hoe-Yong;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.390-390
    • /
    • 2008
  • In this paper, we have designed and fabricated optical waveguides based on the Mach-Zehnder Interferometer (MZI) for application to sensor. The evanecent-wave sensor based on the MZI principle has sufficiently high sensitivity to measure the change of the refractive index on surface of a waveguide. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of MZI optical waveguides was performed by a conventional Planar Lightwave Circuit (PLC) fabrication process. The fabricated MZI optical waveguide device was measured. According to the measurement result, the insertion loss of MZI optical waveguide device was below 3.5 dB and the polarization dependent loss (PDL) was within 0.1dB. In addition, we analyzed optical properties of MZI sensor according to the refractive index change of the sensor arm.

  • PDF

Development of Active thin Film Optical Waveguide $C^{2+}$ -ion Sensor (능동형 박막 광도파로 칼슘 이온 센서의 개발)

  • Lee, Su-Mi;Gang, Sin-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.49-54
    • /
    • 2000
  • A new functional organic thin film optical waveguide ion sensor is designed, which can select a specific ion, i.e., $Ca^{2+}$ -ion. The sensing membrane was composed of PVC-PVAC-PVA copolymer matrix based on anionic cation-selective chromoionophor(ETH5294), neutral ionophore(K23El), anionic site and plasticizer and it was coated on the etched glass substrate as embeded type optical waveguide itself. The sensor sensitivity dependence on waveguide length and thickness, contence of chromoionophore, and each mode was investigated. And this sensor could detect $Ca^{2+}$ ion in concentrations ranging from 1$\times$10­6~1M(with 0.05M tris-HCI buffer solution of pH7.4) by measuring the absorbance change at 514nm of light. Utilizing thin film membrane, the fast response time and high sensitivity are obtained. Also, it is expected that this sensor can be applied to various biochemical important ions.ons.

  • PDF

PLC Optical Sensor for Contamination Monitoring on the Flow-Cell in the Water Quality Measurement System (수질 측정용 플로우 셀의 오염 모니터링을 위한 평면광도파로 센서)

  • Han, Seung Heon;Kim, Tae Un;Jung, Haeng Yun;Ki, Hyun Chul;Kim, Doo Gun;Kim, Seon Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.472-476
    • /
    • 2019
  • We have proposed a novel planar lightwave circuit (PLC) optical sensor to monitor the contamination in a flow-cell where water is continuously supplied through a water quality measurement system. We designed a PLC chip with a V-shape waveguide and the simulated its function as a sensor for monitoring contamination in a flow-cell using a numerical the FDTD (finite-difference time-domain) analysis. A novel cross type of waveguide was introduced to make the PLC chip of the V-shaped waveguide. The fabricated PLC was cut into the cross waveguide. A change in the optical propagation loss of the PLC sensor was observed after immersing the PLC sensor into city water. It was determined that the propagation loss of the PLC sensor was 3 dB at a wavelength of $1.55{\mu}m$ in the city water for 15 days.

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

A Design Method of the 94GHz(W-Band) Waveguide Harmonic Voltage Controlled Oscillator for the Armor Sensor (장갑표적 감지센서용 94GHz 도파관 하모닉 전압조정발진기 설계 기법)

  • Roh, Jin-Eep;Choi, Jae-Hyun;Li, Jun-Wen;Ahn, Bierng-Chearl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.64-72
    • /
    • 2005
  • In this paper, we propose a design method of the millimeter-wave(W-Band) waveguide cavity harmonic voltage controlled oscillator(VCO) using a Gunn diode for the armor sensor. Using the 3-dimensional simulation tool(Ansoft $HFSS^{TM}$), we were able to find the impedance matching point between waveguide and Gunn diode and estimate the oscillation frequency. A varactor diode is used for the frequency tuning, and we find out the equation for the calculation of the tunable frequency range. The designed VCO shows good performances; 17dBm output power at 94GHz center frequency, 520MHz frequency tuning range similar to the estimated value(480MHz).

Low Frequency Electric Field Sensor using a Reflective Interference Type of Optical Modulator (반사간섭형광변조기를 이용한 저주파 전자계 계측센서)

  • Choi, Young-Kyu;Kim, Girae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.471-476
    • /
    • 2005
  • We proposed an optical modulator of reflective type to compose the electric field sensor, and theoretically analyzed the performance and characteristics. For the high sensitivity of the sensor, a method to improve the modulation index of the modulator was presented. The electric field sensor using Ti:LiNbO$_{3}$ waveguide was fabricated and qualitatively investigated the characteristics by measuring the low frequency electric field. Even though the sensor showed relatively low modulation index, the electric filed strength of 10$^{-2}$V/m was measured. The experimental results revealed the utilities of this type electric field sensor.