• Title/Summary/Keyword: Waveguide Finite Element Method

Search Result 65, Processing Time 0.034 seconds

Analysis of Waveguide Junction in H-Plane Using Finite Element-Boundary Element Method (혼합 유한요소법을 사용한 H-평면의 도파관 접합 해석)

  • 정진교;천창열;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.666-672
    • /
    • 1994
  • An H-Plane waveguide component with arbitrary shape is analyzed using finite element method(FEM) Cooperated with boundary element method(BEM). For the application of BEM in the waveguide structure, a ray representation of the waveguide Green's function is used. This technique is applied to the analysis of the waveguide inductive junction. The results are compared with the results of the mode matching technique. The comparison shows good agreement.

Analysis of a coupled waveguide structure using the edge element method (변유한요소법을 이용한 결합구조를 갖는 도파관 구조의 해석)

  • Kim, Young-Tae;Kwon, Jin-Ho;Ahn, Dal;Park, Jun-Seok;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1117-1119
    • /
    • 1999
  • An edge finite element method is applied to calculate the field distribution of a coupled waveguide structure. We compares a node based finite element method with the edge element one. For 2-d eigenvalue problems of waveguide structures, the former generates spurious eigenmodes, but the latter dose not. Using an simple rectangular waveguide, we implement both methods to obtain some results of field computation in waveguide. The paper shows that the finite element method using edge elements succeeds in suppressing spurious solutions.

  • PDF

Vibration of Pipes Coupled with Internal and External Fluids (내부 및 외부 유체와 연성된 파이프의 진동 해석)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • The waveguide finite element (WFE) method is a useful numerical technique to investigate wave propagation along waveguide structures which have uniform cross-sections along the length direction ('x' direction). In the present paper, the vibration and radiated noise of the submerged pipe with fluid is investigated numerically by coupling waveguide finite elements and wavenumber boundary elements. The pipe and internal fluid are modelled with waveguide finite elements and the external fluid with wavenumber boundary elements which are fully coupled. In order to examine this model, the point mobility, dispersion curves and radiated power are calculated and compared for several different coupling conditions between the pipe and internal/external fluids.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Numerical Analysis of Waveguide T-Junction (T-접합 도파관의 수치적 해석)

  • Cheon, Changyul;Chung, Jin-Kyo
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.25-31
    • /
    • 1993
  • This paper presents an analysis of microwave device component. An H-Plane waveguide component with arbitrary shape is analyzed using finite element method(FEM) cooperated with boundary element method(BEM). The finite element method(FEM) is applied to the junction region and the boundary element method(BEM) to the waveguide region. For the application of BEM in the waveguide structure, a ray representation of the waveguide Green's function is used. The proposed technique was applied to the analysis of the waveguide inductive junction to compare the numerical result with the result of the mode matching technique. The comparison showed good agreements between the two results. Transmitted powers were also computed in T-junction waveguides for the various shape of the junction area.

  • PDF

Comparison of Absorbing Boundary Conditions and Waveguide Port Boundary Condition for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 시뮬레이션에 있어 흡수경계조건 및 도파관 포트 경계조건 고찰 및 비교)

  • Mincheol Jo;Woobin Park;Woochan Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.27-36
    • /
    • 2023
  • Waveguides are transmission lines that guide electromagnetic waves in the desired direction and are utilized in various fields such as medical devices, radar systems, and satellite communications. Computational electromagnetics (CEM) is essential for designing and optimizing waveguides. The finite element method (FEM), which is one of the numerical analysis techniques, is efficient in solving closed problems such as waveguides. In order to apply FEM for waveguide analysis, boundary conditions that truncate the computational domain are required. This paper performs electromagnetic simulations using absorbing boundary conditions (ABC) and waveguide port boundary conditions (WPBC) in 2/D and 3/D waveguides using the finite element method and compared their performances. The accuracy of the analysis was verified by comparing the results with HFSS, a representative commercial electromagnetic simulation software. Simulation results confirm that applying WPBC allows for smaller analysis domains than ABC.

Analysis of Waveguide Junction in H-Plane Using Finite Element-Boundary Element Method (혼합 유한요소법을 사용한 H평면의 도파관 접합 해석)

  • Jung, Jin-Kyo;Cheon, Chang-Yul;Jung, Hyun-Kyo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.663-665
    • /
    • 1993
  • An H-Plane waveguide component with arbitrary shape is analyzed using finite element technique(FEM) cooperated with boundary element method(BEM). For the application of BEM in the waveguide structure, a hybrid ray-mode representation of the waveguide Green's function is used. This technique is applied to the waveguide step load and the computed results are compared with the earlier theoretical results.

  • PDF

Efficient Calculation of a Step Discontinuity for Shielded-Microstrip using Vector Finite Element (VFEM) and Mode Matching Method

  • Kim, Young-Tae;Park, Jun-Seok;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.268-272
    • /
    • 2002
  • In this paper, we proposed a procedure to analyze a shielded-microstrip step discontinuity using the mode matching method (MMM) combined with the vector finite element method (VFEM), which is used to find the equivalent waveguide-model for a microstrip. In order to calculate the effective-widths and -dielectric permittivity of the equivalent waveguide-model corresponding shielded-microstrip, the propagation constant and characteristic impedance are calculated from the VFEM. MMM is then applied to find the scattering parameter in the planar waveguide. This technique makes it possible to take advantage of the high accuracy of the VFEM as well as the high efficiency of the MMM.

A Coupled-Line Type Waveguide Bandpass Filter using Normalized Impedance Concept

  • Park, Jun-Seok;Kim, Young-Tae;Kim, Sun-Hyeong;Lim, Jae-Bong;Cho, Hong-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.126-132
    • /
    • 2003
  • In this paper, a coupled-line type waveguide bandpass filter is newly proposed. The proposed bandpass filter configuration consists of magnetically coupled waveguide cavities. In order to show the background of the proposed waveguide bandpass filter, the general coupled line TEM bandpass filter theory, which means the coupled line filter with arbitrary coupled line length and impedance level, will be briefly introduced. Calculations for the even- and odd-mode wave impedance of a coupled line waveguide structure are achieved based on the normalized impedance concept for a broad-side coupled waveguides by using vector finite element method(VFEM) calculation. Measured result of an implemented coupled-line type waveguide filter is presented.

Vibration Analysis for Infinite Length Waveguide Structures Connected with Finite Length Structures Using Impedance Coupling (유한 길이 구조물과 무한 길이 도파관 구조물의 임피던스 연성을 이용한 진동 해석)

  • Ryue, Jungsoo;Lee, Jaehong;Hong, Chinsuk;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.360-370
    • /
    • 2015
  • In case that an infinite length waveguide structure is connected with a finite length structure, it is required to combine a wave approach for the waveguide structure and a modal approach for the finite length structure to investigate the dynamic response of the connected target structure. In this study, the wavenumber finite element (WFE) analysis is adopted for the infinite length waveguide substructure and a finite element (FE) method is applied for the finite length substructure and then their results are coupled in terms of the impedance or mobility at the connected points between the substructures. As a structural model, an infinite length cylindrical shell with a rectangular plate inside is regarded. These two substructures are connected at the four corner points of the plate, rigidly or resiliently. From this investigation, it was confirmed that the wave approach (WFE method) and modal approach (FE method) can be combined by the impedance coupling.