• Title/Summary/Keyword: Wavefront Reconstruction

Search Result 22, Processing Time 0.03 seconds

High-order Reduced Radial Zernike Polynomials for Modal Reconstruction of Wavefront Aberrations in Radial Shearing Interferometers

  • Tien Dung Vu;Quang Huy Vu;Joohyung Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.692-700
    • /
    • 2023
  • We present a method for improving the accuracy of the modal wavefront reconstruction in the radial shearing interferometers (RSIs). Our approach involves expanding the reduced radial terms of Zernike polynomials to high-order, which enables more precise reconstruction of the wavefront aberrations with high-spatial frequency. We expanded the reduced polynomials up to infinite order with symbolic variables of the radius, shearing amount, and transformation matrix elements. For the simulation of the modal wavefront reconstruction, we generated a target wavefront subsequently, magnified and measured wavefronts were generated. To validate the effectiveness of the high-order Zernike polynomials, we applied both low- and high-order polynomials to the wavefront reconstruction process. Consequently, the peak-to-valley (PV) and RMS errors notably decreased with values of 0.011λ and 0.001λ, respectively, as the order of the radial Zernike polynomial increased.

Wavefront 3D Reconstruction and Measurement for Natural 3D Display System

  • Matoba, Osamu;Nitta, Kouichi;Awatsuji, Yasuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.935-938
    • /
    • 2008
  • Three-dimensional (3D) display systems based on wavefront reconstruction are presented. To obtain the wavefront of 3D objects, we present holographic recording using temporally or spatially phase-shifting interferometer. In the 3D display systems, phase-only reconstruction using a spatial light modulator and an approach to increase the reconstructed power are presented.

  • PDF

Reconstruction of Wavefront Aberration of 100-TW Ti:sapphire Laser Pulse Using Phase Retrieval Method

  • Jeong, Tae-Moon;Kim, Chul-Min;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2008
  • A phase retrieval method using an error reduction algorithm is developed for reconstructing a wavefront aberration of an 100-TW Ti:sapphire laser pulse from the measurement of a focal spot. The phase retrieval method can successfully reconstruct a wavefront aberration of a 100-TW Ti:sapphire laser pulse, and the reconstructed wavefront aberration shows a good agreement with the wavefront aberration measured with a wavefront sensor. The effect of the dynamic range and the intensity noise on the reconstruction is also investigated in reconstructing a wavefront aberration of an 100-TW Ti:sapphire laser pulse.

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF

Performance Analysis of the Inversion Schemes in the Spotlight-mode SAR(Synthetic Aperture Radar) (Spotlight-mode SAR(Synthetic Aperture Radar)에서의 Inversion 기법 성능 분석)

  • 최정희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.130-138
    • /
    • 2003
  • The classical image reconstruction for stripmap-mode Synthetic Aperture Radar is the Range-Doppler algorithm. When the spotlight-mode SAR system was envisioned, Range-Doppler algorithm turned out to fail rapidly in this SAR imaging modality. Thus, what is referred to as Polar format algorithm, which is based on the Plane wave approximation, was introduced for imaging from spotlight-mode SAR raw- data. In this paper, we have studied for the raw data processing schemes in the spotlight-mode Synthetic Aperture Radar. We apply the Wavefront Reconstruction scheme that does not utilize the approximation in spotlight-mode SAR imaging modelity, and compare the performance of target imaging with the Polar format inversion scheme.

The Study of Wavefront Aberration Reconstruction for Optical System (광학계의 파면수차 재구성에 대한 연구)

  • Park, Seong-Jong;Ju, Seok-Hee;Kim, Sung-Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.357-364
    • /
    • 2005
  • To develope the assessment equpiments of an optical system using adaptive optics, we developed the program of wavefront reconstruction for an optical system like eye. We used matlab in order to program the wavefront reconstruction for an optical system and presented the wavefront function of optical system by the zemike polynomials using modal method. To test the developed program, we calculated the zemike coefficient(n=7) of cooke triplet using code V, and compared the wavefront shape and the zemike polynomials using code V to those using the developed program. In this case, the used zemike coefficients were n=2, 3, 4, 5, 6, 7, 8, 9, and 10 and the number of sub-aperture were 1,253. From these results, we know that the reconstructed wavefronts were similar to the wavefront of cooke triplet as n was the larger than 4 and the zemike coefficient was equal to that of cooke triplet as n was 7. The developed program is able to be applied to the core technology to develope the assessment equipment of an optical system using the adaptive optics.

  • PDF

A New Shack-Hartmann Type Wavefront Sensor Using Liquid Crystal Panels

  • Xiaoxi, Chen;Xu, Liu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.528-530
    • /
    • 2005
  • In this paper, we present a new and practical method for achieving real-time wavefront measurement, dramatically increasing the resolution, dynamic range of Shack-Hartmann wavefront sensor and improving the wavefront reconstruction quality. In proposal method, a liquid crystal display panel (LCD) for the generation of an array of Fresnel microlenses is use instead of the static microlens array of the conventional Shack-Hartmann type sensor. An off-axis holographic microlens array is designed instead of the normal microlens array to increase the effective array and then the dynamic range. The focus properties of the off-axis lens are studied.

  • PDF

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Wavefront Folding Interferometer for 3-dimensional Coherence Imaging (3 차원 결맞음 결상을 위한 파면 접힘 간섭계)

  • Oh, Se-Baek;Hong, Young-Joo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.755-759
    • /
    • 2004
  • The van Cittert-Zernike theorem has been used in radio astronomy. Recently, the van Cittert-Zernike theorem has been tried to 3D source reconstruction. A couple of interferometer has been used in 3D coherence imaging like Michelson Stellar Interferometer and Rotational Shearing Interferometer. We propose a new type of interferometer, which is a wavefront folding interferometer with a corner cube. By characteristics of the corner cube, it is capable of measuring both mutual intensity and cross spectral density function, and it is very easy to align and robust to disturbance. We simulate the feasibility of this interferometer setup by simulation of point source reconstruction.

  • PDF

Improved Iterative Method for Wavefront Reconstruction from Derivatives in Grid Geometry

  • Nguyen, Vu-Hai-Linh;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This paper proposes a robust, simple zonal wavefront-estimation method in a grid sampling model. More slopes are added to the integral equation of the algorithm to improve the accuracy and convergence rate of this approach, especially for higher-order optical aberrations. The Taylor theorem is applied to clarify the mathematical description of the remaining error in the proposed method. Several numerical simulations are conducted to ensure the performance and improvement in comparison to the Southwell and previous algorithm. An experiment is also conducted according to deflectometry output and the results are verified using a reference measured with a stylus system.