• Title/Summary/Keyword: Waveform sampling system

Search Result 23, Processing Time 0.029 seconds

The investigation of a new fast timing system based on DRS4 waveform sampling system

  • Zhang, Xiuling;Du, Chengming;Chen, Jinda;Yang, Herun;kong, Jie;Yang, Haibo;Ma, Peng;Shi, Guozhu;Duan, limin;Hu, Zhengguo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.432-438
    • /
    • 2019
  • In the study of nuclear structure, the fast timing technique can be used to measure the lifetime of excited states. In the paper, we have developed a new fast timing system, which is made up of two $LaBr_3:Ce$ detectors and a set of waveform sampling system. The sampling system based on domino ring sampler version 4 chip (DRS4) can digitize and store the waveform information of detector signal, with a smaller volume and higher timing accuracy, and the waveform data are performed by means of digital waveform analysis methods. The coincidence time resolution of the fast timing system for two annihilation 511 keV ${\gamma}$ photon is 200ps (FWHM), the energy resolution is 3.5%@511 keV, and the energy linear response in the large dynamic range is perfect. Meanwhile, to verify the fast timing performance of the system, the $^{152}Gd-2_1^+$ state form ${\beta}^+$ decay of $^{152}Eu$ source is measured. The measured lifetime is $45.3({\pm}5.0)ps$, very close to the value of the National Nuclear Data Center (NNDC: $46.2({\pm}3.9)ps$). The experimental results indicate that the fast timing system is capable of measuring the lifetime of dozens of ps. Therefore, the system can be widely used in the research of the fast timing technology.

Cryogenic voltage sampling for arbitrary RF signals transmitted through a 2DEG channel

  • Kim, Min-Sik;Kim, Bum-kyu;Kim, U.J.;Choi, H.K.;Kim, Ju-Jin;Bae, Myung-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.23-26
    • /
    • 2022
  • A lossless transport of an arbitrary waveform in a frequency range of 106-109 Hz through a conduction channel in a cryogenic temperature is of importance for a high-speed operation of quantum device. However, it is hard to use a commercial oscilloscope to directly detect the waveform travelling in a device located in a cryogenic system. Here, we developed a cryogenic voltage sampling technique by using a Schottky barrier gate prepared on a surface of a GaAs/AlGaAs device, which revealed that an incident rectangle waveform can transport through a 1 mm long two-dimensional conduction channel without waveform deformation up to 20 MHz, while further study is needed to increase the detection frequency.

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Measurement and Analysis for Electric Fields due to Lightning stepped leaders (뇌방전의 리더진전에 따른 전장파형의 측정과 분석)

  • Lee, B.H.;Jeang, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2164-2166
    • /
    • 1999
  • This paper is describes the measured electric field waveform radiated by lightning discharge. We have performed measurement and analysis of the electric fields associated with stepped leaders. Electric field measurement system was composed of hemisphere electric field sensor, measurement system of a distance from lightning strokes, automatical recording system, A/D board, personal computer etc. A/D board have high sampling time, high speed data processing, 8bit of resolution. Also, measured characteristics of stepped leaders radiated by were analyzed.

  • PDF

Traceable AC Voltage and Current Measurements Using Digital Sampling Technique (디지털 샘플링 방법을 사용한 교류전압과 전류의)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.686_687
    • /
    • 2009
  • The traceability maintenance system for the AC voltage and current has been developed at the frequency range of 20 Hz to 100 Hz without using any compensation technique which is used at thermal converter (TC) ac-dc transfer system at low frequencies. The system uses a digital voltmeter (DVM) as a data acquisition system of the input waveform and stored data in memory. The developed algorithm acquires and processes the sampling data to calculate the root mean square (rms) value of the input voltage of DVM which operates at DC 10 V range for better accuracy. The best uncertainty of the AC voltage measurements is $3 {\mu}V/V$ within the frequency range. The best uncertainty of the AC current measurements is better than the $5 {\mu}A/A$ and mainly depend on the current to voltage converter, ac-dc current shunt or Current Transformer (CT), used for the measurement

  • PDF

Gradient Waveform Synthesizer in Magnetic Resonance Imaging System using Digital Signal Processors (DSP를 이용한 자기공명영상시스템의 경사자계 파형 발생기)

  • Go, Gwang-Hyeok;Gwon, Ui-Seok;Kim, Chi-Yeong;Kim, Hyu-Jeong;Kim, Sang-Muk;An, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • In this paper, we develop a TMS320C31 (60MHz) digital signal processor (DSP) board to synthesize gradient waveforms for Spiral Scan Imaging (SSI), which is one of the ultra fast magnetic resonance imaging (MRI) methods widely used. In SSI, accurate gradient waveforms are very essential to high quality magnetic resonance images. For this purpose, sampling rate for synthesizing the gradient waveforms is set twice as high as the data sampling rate. With the developed DSP boards accurate gradient waveforms are obtained. Ultra fast spiral scan imaging with the developed with the developed DSP board is currently under development.

  • PDF

Application of Biosignal Data Compression for u-Health Sensor Network System (u-헬스 센서 네트워크 시스템의 생체신호 압축 처리)

  • Lee, Yong-Gyu;Park, Ji-Ho;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.352-358
    • /
    • 2012
  • A sensor network system can be an efficient tool for healthcare telemetry for multiple users due to its power efficiency. One drawback is its limited data size. This paper proposed a real-time application of data compression/decompression method in u-Health monitoring system in order to improve the network efficiency. Our high priority was given to maintain a high quality of signal reconstruction since it is important to receive undistorted waveform. Our method consisted of down sampling coding and differential Huffman coding. Down sampling was applied based on the Nyquist-Shannon sampling theorem and signal amplitude was taken into account to increase compression rate in the differential Huffman coding. Our method was successfully tested in a ZigBee and WLAN dual network. Electrocardiogram (ECG) had an average compression ratio of 3.99 : 1 with 0.24% percentage root mean square difference (PRD). Photoplethysmogram (PPG) showed an average CR of 37.99 : 1 with 0.16% PRD. Our method produced an outstanding PRD compared to other previous reports.

Evaluation of energy correction algorithm for signals of PET in heavy-ion cancer therapy device

  • Niu, Xiaoyang;Yan, Junwei;Wang, Xiaohui;Yang, Haibo;Ke, Lingyun;Chen, Jinda;Du, Chengming;Zhang, Xiuling;Zhao, Chengxin;Kong, Jie;Su, Hong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • In order to solve the contradiction between requirements of high sampling rate for acquiring accurate energy information of pulses and large amount of data to be processed timely, the method with an algorithm to correct errors caused by reducing the sampling rate is normally used in front-end read-out system, which is conductive to extract accurate energy information from digitized waveform of pulse. The functions and effects of algorithms, which mainly include polynomial fitting with different fitting times, double exponential function fitting under different sampling modes, and integral area algorithm, are analyzed and evaluated, and some meaningful results is presented in this paper. The algorithm described in the paper has been used preliminarily in a prototype system of Positron Emission Tomography (PET) for heavy-ion cancer therapy facility.

Fabrication of High Frequency Magnetic Characteristics Measurement System Using Digital Oscilloscope and Computer Remote Control (디지털 오실로스코프와 컴퓨터 제어기법을 이용한 고주파 자기특성 측정장치 제작)

  • 김기옥;이재복;송재성;민복기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.327-333
    • /
    • 1997
  • We designed and constructed the high frequency magnetic characteristics measurement system to measure core loss, B-H curve, permeability of toroidal ferrite core, amorphous core and various materials for high frequency application. The system consists of universal equipments such as digitizing oscilloscope, signal generator, power amplifier, PC in order to make upgrade easily. The power source is composed of waveform synthesizer and power amplifier ranging from DC to 20 MHz, and output signal H and B from sample core are digitized by oscilloscope with sampling rate 1 GS/ s per channel. Computer controls power source and oscilloscope, reads data from oscilloscope, displays analyzed waveform and saves data with file. The entire procedures finishes within few seconds.

  • PDF

Pretreatment For The Problem Solution Of Contents-Based Music Retrieval (내용 기반 음악 검색의 문제점 해결을 위한 전처리)

  • Chung, Myoung-Beom;Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.97-104
    • /
    • 2007
  • This paper presents the problem of the feature extraction techniques that has been used a content-based analysis, classification and retrieval in audio data and proposes a course of the preprocessing for a new contents-based retrieval methods. Because the feature vector according to sampling value changes, the existing audio data analysis is problem that same music is appraised by other music. Therefore, we propose waveform information extraction method of PCM data for retrieval audio data of various format to contents-based. If this method is used. we can find that audio datas that get into sampling in various format are same data. And it may be applied in contents-based music retrieval system. To verity the performance of the method, an experiment was done feature extraction using STFT and waveform information extraction using PCM data. As a result, we could know that the method to propose is effective more.

  • PDF