• Title/Summary/Keyword: Wave-number

Search Result 1,648, Processing Time 0.03 seconds

Heat and mass transfer in laminar-wavy film (층류-파동 액막의 열 및 물질전달)

  • 김병주;김정헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 1998
  • Falling film absorption process is an important problem in application such as absorption chillers. The presence of waves on the film affects the absorption process significantly. In the present study the characteristics of heat and mass transfer in laminar-wavy falling film were studied numerically. The wavy flow behavior was incorporated in the energy and diffusion equation. The numerical solution indicated that the interfacial wave increased the transfer rates remarkably. Interfacial shear stress and wave frequency seemed to be the dominant factors on the film Nusselt number and Sherwood number in the wavy film. A comparison of the transfer rates of the wavy film to that of the smooth film showed that the mass transfer rate could be increased by more than 50%.

  • PDF

Numerical Prediction of the Flow Characteristics of a Micro Shock Tube

  • Arun Kumar, R.;Suryan, Abhilash;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.178-181
    • /
    • 2011
  • Recently, micro shock tube is being extensively used in various fields of engineering applications. The flow characteristics occurring in the micro shock tube may be significantly different from that of conventional macro shock tube due to very low Reynolds number and Knudsen number effects which are, in general, manifested in such flows of rarefied gas, solid-gas two-phase, etc. In these situations, Navier-Stokes equations cannot properly predict the micro shock tube flow. In the present study, a two-dimensional CFD method has been applied to simulate the micro shock tube, with slip velocity and temperature jump boundary conditions. The effects of wall thermal conditions on the unsteady flow in the micro shock tube were also investigated. The unsteady behaviors of shock wave and contact discontinuity were, in detail, analyzed. The results obtained show much more attenuation of shock wave, compared with macro-shock tubes.

  • PDF

Unstable Interface Phenomena in a Micro Channel

  • Inamuro T.;Kobayashi K.;Yamaoka Y.;Ogino F.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.118-120
    • /
    • 2003
  • The behavior of viscous fingerings caused by an external force is investigated by using a two­phase lattice Boltzmann method. The effects of the modified capillary number, the viscosity contrast, and the modified Darcy-Rayleigh number on the instability of interfaces are found. The calculated wave numbers are in good agreement with the theoretical ones in the range of wave numbers smaller than 10, but the calculated ones tend to become smaller than the theoretical ones in higher wave numbers.

  • PDF

An Experimental Study on the Propagation of Impulse Noise in the Far Sound Field (원음장에서의 충격성 소음전파에 관한 실험적 연구)

  • 송화영;제현수;이주원;이성태;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.852-855
    • /
    • 2004
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a straight pipe attached to the open end of a simple shock tube. The sound pressure level and directivity of the impulse noise propagating from the exit of pipe with several different diameters are measured in the far sound fold for the range of the incident shock wave Mach number between 1.07 and 1.26. The experimental results showed that the peak values of impulse noises had a strong dependance on the exit diameter of a pipe and the shock wave Mach number. The impulse noise had the directivity propagating toward to the pipe axis and the characteristics of inverse square law of propagation distance. Moreover, it was shown that the one-third octave band SPL of impulse noise was almost constant regardless of the frequency band.

  • PDF

Numerical Analysis of the Mach Wave Radiation in an Axisymmetric Supersonic Jet (축대칭 초음속 제트에서의 마하파 방사에 관한 수치적 연구)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.71-77
    • /
    • 2000
  • An axisymmetric supersonic jet is simulated at a Mach number of 1.5 and a Reynolds number of $10^5$ to identify the mechanism of sound radiation from the jet. The present simulation is performed based on the high-order accuracy and high-resolution ENO(Essentially Non-Oscillatory) schemes to capture the time-dependent flow structure representing the sound source. In this simulation, optimum expansion jet is selected as a target, where the pressure at nozzle exit is equal to that of the ambient pressure, to see pure shear layer growth without effect of change in jet cross section due to expansion or shock wave generated at nozzle exit. Shock waves are generated near vortex rings, and discernible pressure waves called Mach wave are radiated in the downstream direction with an angle from the jet axis, which is characteristic of high speed jet noise. Furthermore, vortex roll-up phenomena are observed through the visualization of vorticity contours.

  • PDF

Influence of Input Parameters on Shock Wave Propagation in Quasi-3D Hydrodynamic Model (준3차원 동수역학 모형의 입력변수가 충격파 전파에 미치는 영향)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • Present study investigated the influence of time step size, turbulent eddy viscosity, and the number of layer on rapid and unsteady propagation of dam break flow. When the time step size had a value such that it resulted in Cr of 0.89, a significant numerical oscillation was observed in the vicinity of the wave front. Higher turbulent viscosity ensured smooth and mild slope of velocity and water stage compared with the flow behavior by no viscosity. The vertical velocity at the lower layer positioned near the bottom showed lower velocity compared with other layers.

Thin-Shell Approach for Elastic Wave Propagation in a Pipe with Liquid

  • Kim Jin Oh;Rose Joseph L.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1087-1094
    • /
    • 2005
  • This paper presents the validity and limitation of the thin-shell approach for the analysis of elastic wave propagation in a pipe with nonviscous liquid. The phase velocities calculated by the thin-shell approach were compared with those calculated by the thick-cylinder approach. In contrast to the case of the empty pipe, where only two modes were obtained and the first mode was calculated in a limited frequency range, the results for the liquid-filled pipe exhibits a large number of modes due to the large number of branches of the apparent liquid mass. Several of the lowest modes of the waves in a liquid-filled pipe were calculated for various pipe thicknesses in a low frequency range. The thin-shell approach was valid for a reasonable range of pipe thicknesses.

Senstivity analysis by seismograph of composition Dam (복합댐의 지진계수별 민감도 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Hong, Won-Pho;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.820-826
    • /
    • 2008
  • Differ number of seismograph to the composition dam by recently frequent earthquake and analyzed responsiveness. Interest for dam inner place by increase of something wrong flood and inside and outside of the country earthquake appearance according to unusual change of weather is risen, on important urea in dam safety floodgate school register by structural safety divide can. Therefore, by PMP (PMF) of dam and increase of domestic earthquake occurrence, need research about earthquake resistant nature ability estimation of water resources facilities. Because responsiveness analysis applies number 0.154 ~ 0.25 g of seismograph, seismic wave that use in analysis is being suitable in dynamic analysis of construction such as Rockfill dam from representative chapter cycle faction and recommend in domestic internal examination design workbook, and use results applied much Hachinohe wave onions in van abroad.

  • PDF

Characteristics the Pressure Variations according to the Exhaust Pipe of 4-Stroke Single Engine (4행정 단기통 엔진의 배기관에 따른 압력 변동 특성)

  • Lee, Hyo-Deok;Choi, Seok-Cheun;Lee, Sang-Chul;Lee, Kwang-Young;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1666-1671
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working, As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF

Measurement Method of Mean Flow Velocity Using the Plane Waves in the Pipe (관내 평면파를 이용한 유속 측정기술)

  • Cheung Wan-Sup;Kwon Hyu-Sang;Park Kyung-Am;Paik Jong-Seung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.243-246
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity not only over the cross sectional area but also along the pipe by exploiting the acoustic plane waves in the pipe. When fluid flows in the pipe and two plane waves propagate oppositely through the medium in it, the flow velocity causes a change of the wave number of the plane waves. The wave number of the positive going plane wave decreases but oppositely that of negative going one increases in comparison to no flow of the medium in the pipe. Theoretical backgrounds of this method are in details discussed and measurement results of the mean flow velocity are illustrated to reveal the feasibility and effectiveness of the suggested technique.

  • PDF