• Title/Summary/Keyword: Wave-front sensing

Search Result 7, Processing Time 0.021 seconds

Development of Millimeter wave Radar Front-end for Automobile (차량용 밀리파 레이더 프론트엔드의 개발)

  • Shin, Cheon-Woo;Lee, Kyu-Han;Park, Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.53-56
    • /
    • 2001
  • This paper has been developed a millimeter-wave radar to prevent car collision. This system needs to progress the problem as follows; (1) Increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, (2) Need for a device to help drivers who are in trouble due to bad weather conditions. (3) Need for a millimeter-wave radar as obstacles which need to be detected are small. This system is composited with some major technologies, Narrow beams to recognize obstacles or other objects, One-side circuit technology to prevent interference between electric waves, and Parts designed for radar products which are able to transmit millimeter - waves. The system has a various a application Field, Car distance auto-control system, prevent bump collision due to unexpected stoppage of the front car or careless driving, obstacle warning system, Car following system, and industrial and military purposes system. We have a looking forward to propose to develop field tests under various road conditions and hybrid car sensor by combining with other sensors

  • PDF

REMOTE SENSING OF ATMOSPHERIC FRONTAL DYNAMICS OVER THE OCEAN

  • Levy, Gad;Patoux, Jerome
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1003-1006
    • /
    • 2006
  • Frontal regions in midlatitude storms exhibit a wide range of behavior, which can be observed by remote sensors. These include decay, strengthening, rotating, and sometimes spawning of new cyclones. Here we refine and apply recent theories of front and frontal wave development to a case of a front clearly observed and analyzed in remote sensing data. By applying innovative analysis techniques to the data we assess the respective roles of ageostrophy, background deformation, and Boundary Layer processes in determining the evolution of the surface front. Our analysis comprises of diagnosis of the terms appearing in the vorticity and divergence equations using remotely sensed observations.

  • PDF

A new method for monitoring an OLED panel for lighting by sensing the wave-guided light

  • Han, Jun-Han;Moon, Jaehyun;Shin, Jin-Wook;Joo, Chul Woong;Cho, Doo-Hee;Hwang, Joohyun;Huh, Jin Woo;Chu, Hye Yong;Lee, Jeong-Ik
    • Journal of Information Display
    • /
    • v.13 no.3
    • /
    • pp.119-123
    • /
    • 2012
  • In this work, we report on a new monitoring method for an organic light-emitting diode (OLED) panel for lighting by optical sensing of the wave-guided light in the substrate. Using microlens array films, the wave-guided light was extracted into the edge or back side of the panel to be monitored by a photodiode. The luminance of the extracted light was measured as linearly proportional to the front light. Thus, by converting the extracted light into photo voltage, monitoring the luminance change occurring in the OLED is possible. Based on the results and concepts, we have proposed a photodiode-equipped driving circuit which can generate compensated driving current for uniform luminance of OLED panels.

Bullet Train of Giant Nonlinear Internal Waves from Luzon Strait

  • Liu, Cho-Teng;Hsu, Ming-Kuang;Chen, Hsien-Wen;Wang, Dee-Way;Chyou, Yuan-Jie;Lee, Chang-Wei
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.934-937
    • /
    • 2006
  • In the northeastern South China Sea (SCS), fast westward moving (about 2.9 m/s) non-linear internal waves (NLIWs) are emanated nearly daily from the Luzon Strait. Their propagation speed is faster than NLIWs previously observed in the deep water of world oceans, their amplitude of 140 m or more is the largest free propagating NLIWs so far observed in the deep ocean. These NLIWs energized the top 1500 m of the water column, heaving it up and down in 20 min. Their associated energy density and energy flux are the largest observed to date. During 2005 and 2006 experiment, they were found west of the HengChun Ridge (HCR) that links Luzon and Taiwan Islands. This coincides with founding in satellite images, no NLIW front was found east of HCR. But, the turbulent environment east of HCR may prohibit surface signature of NLIWs that were emanated from sills between Batan Islands. The relative contribution of the two ridges on NLIW in Luzon Strait is still under study.

  • PDF

Fast-Converging Algorithm for Wavefront Reconstruction based on a Sequence of Diffracted Intensity Images

  • Chen, Ni;Yeom, Jiwoon;Hong, Keehoon;Li, Gang;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • A major advantage of wavefront reconstruction based on a series of diffracted intensity images using only single-beam illumination is the simplicity of setup. Here we propose a fast-converging algorithm for wavefront calculation using single-beam illumination. The captured intensity images are resampled to a series of intensity images, ranging from highest to lowest resampling; each resampled image has half the number of pixels as the previous one. Phase calculation at a lower resolution is used as the initial solution phase at a higher resolution. This corresponds to separately calculating the phase for the lower- and higher-frequency components. Iterations on the low-frequency components do not need to be performed on the higher-frequency components, thus making the convergence of the phase retrieval faster than with the conventional method. The principle is verified by both simulation and optical experiments.

Big Wave in R&D in Quantum Information Technology -Quantum Technology Flagship (양자정보기술 연구개발의 거대한 물결)

  • Hwang, Y.;Baek, C.H.;Kim, T.;Huh, J.D.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.75-85
    • /
    • 2019
  • Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.