• Title/Summary/Keyword: Wave power conversion

Search Result 169, Processing Time 0.026 seconds

Harmonic Reduction of Electric Propulsion Ship using New Rectification Scheme (새로운 정류방식을 이용한 전기추진선박의 고조파 저감)

  • Kim, Jong-Su;Choi, Jae-Hyuk;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2230-2236
    • /
    • 2012
  • Currently, the AC-to-DC power conversion system using diode rectifiers is mainly used in large vessels. Also, to reduce the total harmonic distortion(THD) of current and voltage, this system requires an additional phase-shifting transformer which can be powered multi-pulses. In this case, due to the installation of the transformer, the spatial or economic loss occurs. This paper presents a novel active rectification scheme using silicon controlled rectifier(SCR) or insulated gate bipolar transistor(IGBT) devices on behalf of the diode rectifiers which are currently operating in large vessels such as LNG Carrier(LNGC). The proposed system can use the low voltage source and reduce current and voltage harmonics generated by nonlinear loads connected to the power distribution bus and save economic costs by removing the phase-shifting transformers which are used in conventional system. Computer simulations are performed under the electric propulsion system which is operating in current large vessel. The results are shown in support of the improvement of THD included in the current and voltage wave forms of propulsion motor.

Widely-tunable high-speed wavelength converter based on four-wave mixing in a semiconductor-fiber ring laser (고리형 반도체-광섬유 레이저에서 4광파 혼합에 의한 광대역 및 고속 파장 변환기)

  • Choi, kyoung-Sun;Seo, Dong-Sun;Lee, Yoo-Seung;Ki, Ho-Jin;Jhon, Young-Min;Lee, Seok;Kim, Dong-Hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We demonstrate a widely-tunable wavelength converter based on four-wave mixing in a semiconductor-fiber ring laser with no external pump light. Applying 10 GHz short pulses at -8 dBm as a probe signal, we achieve continuous wavelength tuning over the semiconductor optical amplifier gain-bandwidth reaching 30 nm down- and 17 m up-wavelength conversion. In addition to the wide tuning capability, the converter shows high-speed conversion and low saturation power capabilities.

Digital Down Converter System improving the computational complexity (복잡도를 개선한 Digital Down Converter 시스템)

  • Moon, Ki-Tak;Hong, Moo-Hyun;Lee, Joung-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.11-17
    • /
    • 2010
  • Multi-standard, multi-band, multi-service system to ensure a flexible interface between the SDR (Software Defined Radio) technology for the implementation of the Stability and Low-Power, Low-Calcualrion DDC (Digital Down Conversion) technology is essential. DDC technology consists of a digital channel filter. This is a typical digital filter because of the limited fisheries are vulnerable to overflow and rounding errors are drawbacks. In this paper, we overcome this disadvantage, we propose the structure of the DDC. The way WDF (Wave Digital Filter) Structural rounding error due to the structural resistance to noise. Therefore, This is the useful structure when the filter coefficients's word length is short. In addition, since IIR filters based on FIR filters based on the amount of computation is reduced because fewer than filter's tap. The proposed structure is used in DDC that CIC (Cascaded Integrator Comb) filter, WDF, IFOP (Interpolated Fourth-Order Polynomials) were analyzed with respect to, the results were confirmed by computer simulation.

A FG-CPW Single Balanced Diode Mixer for C-Band Application (C-Band 용 FG-CPW 단일 평형 다이오드 혼합기)

  • Bae, Joung-Sun;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byung-Je;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2001
  • In this paper, FG-CPW (Finite-Ground Coplanar Wave-Guide) balanced diode mixer is presented. Frequency bandwidth is selected for a C-band, which is 5.72~5.82 GHz for RF, 5.58~5.68 GHz for LO, and 140 MHz for IF signals. A rat-race hybrid is designed for the accomplishment of single balanced type. A low pass filter (LPF) with CPW structure is used far good conversion loss and unwanted harmonics suppression. When LO signal with the power of 4 dBm at 5.635 GHz is injected, a conversion loss of 6.2 dB is obtained for the mixer. Also, the LO to RF and LO to IF isolation of 30 dB and 40 dB are obtained, respectively. This mixer can be used in the area on wireless LAN application.

  • PDF

Frequency conversion using anomalous dispersion of organic material (유기재료의 이상분산을 이용한 파장변환)

  • Kim, Eung-Soo;Kim, Min-Sung;Kang, Shin-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • Second harmonic generation(SHG) by guided phase matching is observed in waveguide structure using the anomalous dispersion of a poled polymer. The second harmonic TM$_{0}$ guided mode could be generated from the fundamental TM$_{0}$ guided mode and then the second harmonic power was higher than any other phase matchable mode because the overlap integral between the fundamental and the second harmonic wave was the largest in the theoretical analysis. Near UV SHG(370 nm) was obtained from the fundamental wavelength of Ti-sapphire laser(740 nm).

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Generation of Radially or Azimuthally Polarized Laser Beams in a Yb:YAG Thin-disc Laser

  • Ye Jin Oh;In Chul Park;Eun Kyoung Park;Jiri Muzik;Yuya Koshiba;Pawel Sikocinski;Martin Smrz;Tomas Mocek;Hoon Jeong;Ji Won Kim
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.416-420
    • /
    • 2024
  • A high-power Yb:YAG thin-disc laser with radial or azimuthal polarization incorporating an intracavity S-waveplate is reported. Depending on the rotational angle of the S-waveplate placed in the cavity, a Yb:YAG thin-disc laser yields 10.8 W and 10.2 W of continuous-wave outputs with radial and azimuthal polarization for an incident pump power of 131 W, corresponding to slope efficiencies of 22.9% and 23.7%, respectively. The output characteristics for each polarization state were investigated in detail by analyzing the insertion loss and the mode overlap efficiency due to the S-waveplate. Further prospects for power scaling will be discussed.

A Study on the Evaluation of Mterial Degradaion for 2.25Cr-1Mo Steel using Ultrasonic Attenuation Characterization

  • Kim, Chung-Soek;Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • In significant number of energy-related facilities for like thermal power plant or petro-chemical industry, CrMo steels are widely used energy conversion industries. However, these materials undergo precipitation of carbides or intermetallic compounds into grain boundary and change of internal microstructure such as coarsening of precipitation, decrease of solute elements and impurity segregation under more severe service conditions, which results in deterioration of inherent superior material characteristics. In this study, it was verified experimentally the feasibility of the aging degradation evaluation for degraded 2.25Cr-lMo steel specimens prepared by isothermal aging heat treatment at 63$0^{\circ}C$ by high frequency longitudinal ultrasonic and surface SH wave investigating the change of attenuation coefficient analyzed by spectral analysis. Attenuation coefficient had a tendency to increase as degradation proceeded.

  • PDF

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization (페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략)

  • Hwang, Eunhye;Kwon, Tae-Hyuk
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.