• Title/Summary/Keyword: Wave power conversion

Search Result 169, Processing Time 0.026 seconds

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology (70 nm MHEMT와 DAML 기술을 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim Sung-Chan;An Dan;Lim Byeong-Ok;Beak Tae-Jong;Shin Dong-Hoon;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

High LO-RF Isolation 94 GHz MMIC Single-balanced Mixer (높은 LO-RF 격리 특성의 94 GHz MMIC Single-balanced Mixer)

  • An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Kim, Sung-Chan;Lee, Sang-Jin;Lee, Mun-Kyo;Shin, Dong-Hoon;Park, Hyung-Moo;Park, Hyun-Chang;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.765-768
    • /
    • 2005
  • In this paper, high LO-RF isolation 94 GHz MMIC single-balanced mixer was designed and fabricated using a branch line coupler and a ${\lambda}/4$ transmission line. The 94 GHz MMIC single-balanced mixer was designed using the 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT(MHEMT) diode. The fabricated MHEMT was obtained the cut-off frequency($f_T$) of 189 GHz and the maximum oscillation frequency($f_{max}$) of 334 GHz. The designed MMIC single-balanced mixer was fabricated using 0.1 ${\mu}m$ MHEMT MMIC process. From the measurement, the conversion loss of the single-balanced mixer was 23.1 dB at an LO power of 10 dBm. The LO-RF isolations of single-balanced mixer was obtained 45.5 dB at 94.19 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.

  • PDF

Simulation of High-Power Magnetron Oscillators Using a MAGIC3D Code (MAGIC3D 코드를 애용한 고출력 마그네트론 발진기의 시뮬레이션)

  • Jung, S.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.538-543
    • /
    • 2006
  • A high-Power continuous-wave (CW) ten-vane double-strapped magnetron oscillator has been investigated using three-dimensional (3D) particle-in-cell (PIC) numerical simulation code, MAGIC3D. The resonant modes and their resonant frequencies of the ten-vane strapped magnetron resonator were obtained to show a large mode separation near the ${\pi}$-mode. An electron cloud formed in an anode-cathode gap, called an interaction space was confined well enough to result in no leakage current. Five spokes were clearly observed in the electron cloud, which definitely ensured the ${\pi}$-mode oscillation in the ten-vane magnetron. Numerical simulations predicted that the saturated microwave output power measured at the coaxial output port was 5.41 kW at the microwave frequency of 893 MHz, corresponding to a power conversion efficiency of 72.6% when the external axial magnetic field was 1150 gauss and the electron beam voltage and current were 6 kV and 1.25 A, respectively.

Design and Fabrication of V-band Up-Mixer and Drive Amplifier for 60 GHz Transmitter (60 GHZ 통신 시스템 송신단의 구현을 위한 V-band MIMIC 상향 주파수 혼합기와 구동 증폭기 설계 및 제작)

  • Jin Jin-Man;Lee Sang-Jin;Ko Du-Hyun;An Dan;Lee Mun-Kyo;Lee Seong-Dae;Lim Byeong-Ok;Cho Chang-Shik;Baek Yong-Hyun;Park Hyung-Moo;Rhee Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.339-342
    • /
    • 2004
  • 본 논문은 밀리미터파 대역 무선통신 시스템 송신부의 응용을 위해 CPW 구조를 이용하여 V-band용 상향 주파수 혼합기와 2단 구동증폭기를 설계$\cdot$제작하였다. 능동소자는 본 연구실에서 제작한 $0.1{\mu}m$ 게이트 GaAs Pseudomorphic HEMTs(PHEMTs)를 사용하였으며 입$\cdot$출력단은 CPW를 사용해 정합 회로를 설계하였다. 제작된 상향 주파수 혼합기는 LO power 5.4 dBm, 2.4 GHz IF 신호를 -10.25 dBm으로 입력하였을 때 Conversion Loss 1.25 dB, LO-to-RF Isolation은 58 GHz에서 13.2 dB의 특성을 나타내었다 2단 구동 증폭기는 측정결과 60 GHz에서 S21 이득 13 dB, $58\;GHz\;\~\;64\;GHz$ 대역에서 S21 이득 12 dB 이상을 유지하는 광대역 특성을 얻었고 증폭기의 Pl dB는 3.8 dBm, 최대 출력전력은 6.5 dBm의 특성을 얻었다.

  • PDF

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.

Fabrication of GaAs Gunn diodes and Characterization of Negative Differential Resistance (GaAs Gunn 다이오드 소자의 제작과 부성미분저항)

  • Kim, Mi-Ra;Lee, Seong-Dae;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.1-8
    • /
    • 2007
  • The DC characteristics of GaAs Gunn diode are investigated as a preliminary study on the planar grade gap injector GaAs Gunn diode which is the transferred electron device with high output power and dc-rf conversion efficiency. The Gunn devices we fabricated were confirmed to have the DC characteristics of negative differential resistance(NDR). We discussed the nature of the NDR effect, including the electron intervalley transfer; the NDR effect was examined for six different cathode radii.

High Performance MMIC Star Mixer for Millimeter-wave Applications (밀리미터파 응용을 위한 우수한 성능의 MMIC Star 혼합기)

  • Ryu, Keun-Kwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.847-851
    • /
    • 2011
  • In this paper, we reported on a high performance MMIC star mixer for millimeter-wave applications. The star mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process on 2 mil thick GaAs substrate. The average conversion loss of 13 dB was measured in the RF frequency range of 81 GHz to 86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-LO isolation characteristics are greater than 30 dB and the input 1-dB compression are approximately 4 dBm. The total chip size is 0.8 mm ${\times}$ 0.8 mm.

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

The Characteristics Analysis of New Dc 48[V] Telecommunication Power System using Forward Type three Phase Rectifier (포워드형 3선 PWM 정류기를 이용한 새로운 DC 48[V] 통신용 전원시스템의 특성 해석)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2006
  • This paper proposed power system for new DC 49[V] telecommunication using forward three-phase PWM rectifier power factor and efficiency for improvement of ripple voltage. Proposed power system for DC 48[V] telecommunication that consists of power conversion devices including switch, inductor and condenser were made between each line, in power inverter device of each switch control turn-on in period of continuity time control to get power factor '1' of sine wave current and on-off of switch lessens peak current that was happened and got conversion efficiency 92.1[%] composing in PWM rectifier of forward form instead of general PWM rectifier. Also, harmonic input regulation value(IEC61000-3-2 Class-As) satisfy input current and reduce ripple factor of output voltage in state that distortion of three-phase supply is overlapped each other.