• Title/Summary/Keyword: Wave power conversion

Search Result 169, Processing Time 0.029 seconds

The Basic Study on Wave Energy Conversion System(II) -Estimation on Extracted Wave Power of Wave Energy Conversion Device- (파력발전시스템에 관한 기초연구(II) -파력발전기의 흡수파력 추정-)

  • 김성근;박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 1990
  • The results of previous works on the wave energy conversion do not seem to be satisfactory due to irregularity, and the non-linear hydrodynamic effect which is inevitably featured due to the structural complexity of the ocean wave energy conversion device. These may cause the difficulty estimating the extracted wave power. In this paper a study on estimating the extracted wave power and its ratio. The present authors have developed another method estimating the extracted wave power using the three dimensional source distribution method, which was turned out to be an improved one. It has been observed that the present results may be used for the control of the wave energy conversion device and the optimal design has been derived from the several case studies.

  • PDF

A Review of Ocean Wave Power Extraction; the primary interface

  • Nik, W.B. Wan;Muzathik, A.M.;Samo, K.B.;Ibrahim, M.Z.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.156-164
    • /
    • 2009
  • This paper aims to describe the importance of data, data collection methods, parameters to estimate the potential of wave energy and environmental impacts. The technical and economical status in wave energy conversion is outlined. Power and energy efficiency relationships are discussed. Many different types of wave-energy converters have been detailed. The progress in wave energy conversion in Malaysia is reviewed.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Design and Fabrication of Low LO Power V-band CPW Mixer Module

  • Dan An;Lee, Bok-Hyung;Chae, Yeon-Sik;Park, Hyun-Chang;Park, Hyung-Moo;Chun, Young-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1133-1136
    • /
    • 2002
  • We designed and fabricated a low local oscillation (LO) power V-band CPW mixer module using a CPW-to-waveguide transition technology for the application of millimeter-wave wireless communication systems. The mixer was designed using a unique gate mixing architecture to achieve simultaneously a low LO input power, a high conversion gain, and good LO-RF isolation characteristics. The fabricated mixer exhibited a high conversion gain of 2 dB at a low LO power of 0 dBm. For data transmission of the 60 ㎓ wireless LNA systems, we fabricated a CPW-to-waveguide converter module of WR-15 type and mounted the fabricated mixer in the converter module. The fabricated V-band mixer exhibited a higher conversion gain and a lower LO input power than other reported V-band mixers.

  • PDF

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Experimental Study on Performance of Wave Energy Converter System with Counterweight

  • Han, Sung-Hoon;Jo, Hyo-Jae;Lee, Seung-Jae;Hwang, Jae-Hyuck;Park, Ji-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In order to convert wave energy into large quantities of high-efficiency power, it is necessary to study the optimal converter system appropriate for the environment of a specific open ocean area. A wave energy converter system with a counterweight converts the translation energy induced from the heave motion of a buoy into rotary energy. This experimental study evaluated the primary energy conversion efficiency of the system, which was installed on an ocean generating basin with a power take-off system. Moreover, this study analyzed the energy conversion performance according to the weight condition of the buoy, counter-weight, and flywheel by changing the load torque and wave period. Therefore, these results could be useful as basic data such as for the optimal design of a wave energy converter with a counterweight and improved energy conversion efficiency.

Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System (파력-해상풍력 복합발전시스템의 IEC61850기반 통합 SCADA시스템 개발)

  • Lee, Jae-Kyu;Lee, Sang-Yub;Kim, Tae-Hyoung;Ham, Kyung-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.811-818
    • /
    • 2016
  • This paper suggests a structure of power control system in floating wave-offshore wind hybrid power generation system. We have developed an unified SCADA(Supervisory Control and Data Acquisition) system which can be used to monitor and control PCS(Power Conversion System) based on IEC61850. The SCADA system is essential to perform the algorithm like proportional distribution and data acquisition, monitoring, active power, reactive power control in hybrid power generation system. IEC61850 is an international standard for electrical substation automation systems. It was made to compensate the limitations of the legacy industrial protocols such as Modbus. In order to test the proposed SCADA system and algorithm, we have developed the wind-wave simulator based Modbus. We have designed a protocol conversion device based on real-time Linux for the communication between Modbus and IEC61850. In this study, SCADA system consists of four 3MW class wind turbines and twenty-four 100kW class wave force generator.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF