• 제목/요약/키워드: Wave optics

검색결과 395건 처리시간 0.04초

Propagation Dynamics of a Finite-energy Airy Beam with Sinusoidal Phase in Optical Lattice

  • Huang, Xiaoyuan;Chen, Manna;Zhang, Geng;Liu, Ye;Wang, Hongcheng
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.267-272
    • /
    • 2020
  • The propagation of a truncated Airy beam with spatial phase modulation (SPM) is investigated in Kerr nonlinearity with an optical lattice. Before the truncated Airy beam enters the optical lattice, a sinusoidal phase is introduced on the wave-front of the beam. The effect of the spatial phase modulation and optical lattice on propagation behavior is analyzed by direct numerical simulation. It is found that the propagation direction of a truncated Airy beam can be effectively controlled by adjusting the values of phase shift. The effects of optical amplitude, truncation factor, spatial modulation frequency, lattice period and lattice depth on the propagation are discussed in detail. By choosing a high modulation depth, the finite-energy Airy beam can be deflected with a large deflection angle in an optical lattice.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Analysis of the THz Resonance Characteristics of H-shaped Metamaterials with Varying Width

  • Ryu, Han-Cheol
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.66-71
    • /
    • 2021
  • The resonance characteristics of H-shaped metamaterials, whose widths were varied while keeping the height constant, were investigated in the terahertz (THz) frequency range. The H-shaped metamaterials were numerically analyzed in two modes in which the polarization of the incident THz electric field was either parallel or perpendicular to the width of the H-shaped structure. The resonant frequency of the metamaterial changed stably in each mode, even if only the width of the H shape was changed. The resonant frequency of the metamaterial operating in the two modes increases without significant difference regardless of the polarization of the incident electromagnetic wave as the width of the H-shaped metamaterial increases. The electric field distribution and the surface current density induced in the metamaterial in the two modes were numerically analyzed by varying the structure ratio of the metamaterial. The numerical analysis clearly revealed the cause of the change in the resonance characteristics as the width of the H-shaped metamaterial changed. The efficacy of the numerical analysis was verified experimentally using the THz-TDS (time-domain spectroscopy) system. The experimental results are consistent with the simulations, clearly demonstrating the meaningfulness of the numerical analysis of the metamaterial. The analyzed resonance properties of the H-shaped metamaterial in the THz frequency range can be applied for designing THz-tunable metamaterials and improving the sensitivity of THz sensors.

Spectral Reconstruction for High Spectral Resolution in a Static Modulated Fourier-transform Spectrometer

  • Cho, Ju Yong;Lee, Seunghoon;Kim, Hyoungjin;Jang, Won Kweon
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.244-251
    • /
    • 2022
  • We introduce a spectral reconstruction method to enhance the spectral resolution in a static modulated Fourier-transform spectrometer. The optical-path difference and the interferogram in the focal plane, as well as the relationship of the interferogram and the spectrum, are discussed. Additionally, for better spectral reconstruction, applications of phase-error correction and apodization are considered. As a result, the transfer function of the spectrometer is calculated, and then the spectrum is reconstructed based on the relationship between the transfer function and the interferogram. The spectrometer comprises a modified Sagnac interferometer. The spectral reconstruction is conducted with a source with central wave number of 6,451 cm-1 and spectral width of 337 cm-1. In a conventional Fourier-transform method the best spectral resolution is 27 cm-1, but by means of the spectral reconstruction method the spectral resolution improved to 8.7 cm-1, without changing the interferometric structure. Compared to a conventional Fourier-transform method, the spectral width in the reconstructed spectrum is narrower by 20 cm-1, and closer to the reference spectrum. The proposed method allows high performance for static modulated Fourier-transform spectrometers.

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure

  • Li, Xiaowei;Xu, Yin;Huang, Dongmei;Li, Feng;Zhang, Bo;Dong, Yue;Ni, Yi
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.323-331
    • /
    • 2022
  • Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.

Full-color Non-hogel-based Computer-generated Hologram from Light Field without Color Aberration

  • Min, Dabin;Min, Kyosik;Park, Jae-Hyeung
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.409-420
    • /
    • 2021
  • We propose a method to synthesize a color non-hogel-based computer-generated-hologram (CGH) from light field data of a three-dimensional scene with a hologram pixel pitch shared for all color channels. The non-hogel-based CGH technique generates a continuous wavefront with arbitrary carrier wave from given light field data by interpreting the ray angle in the light field to the spatial frequency of the plane wavefront. The relation between ray angle and spatial frequency is, however, dependent on the wavelength, which leads to different spatial frequency sampling grid in the light field data, resulting in color aberrations in the hologram reconstruction. The proposed method sets a hologram pixel pitch common to all color channels such that the smallest blue diffraction angle covers the field of view of the light field. Then a spatial frequency sampling grid common to all color channels is established by interpolating the light field with the spatial frequency range of the blue wavelength and the sampling interval of the red wavelength. The common hologram pixel pitch and light field spatial frequency sampling grid ensure the synthesis of a color hologram without any color aberrations in the hologram reconstructions, or any loss of information contained in the light field. The proposed method is successfully verified using color light field data of various test or natural 3D scenes.

Nanosecond Laser Cleaning of Aluminum Alloy Oxide Film

  • Hang Dong;Yahui Li;Shanman Lu;Wei Zhang;Guangyong Jin
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.714-720
    • /
    • 2023
  • Laser cleaning has the advantages of environmental protection, precision, and high efficiency, and has good prospects for application in removing oxide films on the surface of aluminum alloy. This paper discusses the cleaning threshold and cleaning mechanism of aluminum alloy surface oxide film. A nanosecond pulsed laser was used to remove a 5-㎛-thick oxide film from the surface of 7A04 aluminum alloy, and the target surface temperature and cleaning depth were simulated. The effects of different laser energy densities on the surface morphology of the aluminum alloy were analyzed, and the plasma motion process was recorded using a high-speed camera. The temperature measurement results of the experiment are close to the simulation results. The results show that the laser cleaning of aluminum alloy oxide film is mainly based on the vaporization mechanism and the shock wave generated by the explosion.

Retrieving Phase from Single Interferogram with Spatial Carrier Frequency by Using Morlet Wavelet

  • Hongxin Zhang;Mengyuan Cui
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.529-536
    • /
    • 2023
  • The Morlet wavelet transform method is proposed to analyze a single interferogram with spatial carrier frequency that is captured by an optical interferometer. The method can retain low frequency components that contain the phase information of a measured optical surface, and remove high frequency disturbances by wavelet decomposition and reconstruction. The key to retrieving the phases from the low-frequency wavelet components is to extract wavelet ridges by calculating the maximum value of the wavelet transform amplitude. Afterwards, the wrapped phases can be accurately solved by multiple iterative calculations on wavelet ridges. Finally, we can reconstruct the wave-front of the measured optical element by applying two-dimensional discrete cosine transform to those wrapped phases. Morlet wavelet transform does not need to remove the spatial carrier frequency components manually in the processing of interferogram analysis, but the step is necessary in the Fourier transform algorithm. So, the Morlet wavelet simplifies the process of the analysis of interference fringe patterns compared to Fourier transform. Consequently, wavelet transform is more suitable for automated programming analysis of interference fringes and avoiding the introduction of additional errors compared with Fourier transform.

Generation of Radially or Azimuthally Polarized Laser Beams in a Yb:YAG Thin-disc Laser

  • Ye Jin Oh;In Chul Park;Eun Kyoung Park;Jiri Muzik;Yuya Koshiba;Pawel Sikocinski;Martin Smrz;Tomas Mocek;Hoon Jeong;Ji Won Kim
    • Current Optics and Photonics
    • /
    • 제8권4호
    • /
    • pp.416-420
    • /
    • 2024
  • A high-power Yb:YAG thin-disc laser with radial or azimuthal polarization incorporating an intracavity S-waveplate is reported. Depending on the rotational angle of the S-waveplate placed in the cavity, a Yb:YAG thin-disc laser yields 10.8 W and 10.2 W of continuous-wave outputs with radial and azimuthal polarization for an incident pump power of 131 W, corresponding to slope efficiencies of 22.9% and 23.7%, respectively. The output characteristics for each polarization state were investigated in detail by analyzing the insertion loss and the mode overlap efficiency due to the S-waveplate. Further prospects for power scaling will be discussed.

스핀 각 운동량을 이용한 테라헤르츠파 광원: 스핀트로닉 테라헤르츠 발생 (Terahertz Light Source Using Spin Angular Momentum: Spintronic Terahertz Emission)

  • 이규섭
    • 한국광학회지
    • /
    • 제35권5호
    • /
    • pp.218-227
    • /
    • 2024
  • 펨토초 레이저 펄스를 이용한 테이블 탑(table-top) 규모의 THz파 광원은 주로 전자가 가진 전하량의 시공간적인 변화를 기반으로 한다. 본 해설논문에서는 전자가 가진 스핀 각운동량이 THz파 발생에 기여하는 새로운 방식에 대해 소개한다. 우선 강자성체(ferromagnet)에서의 레이저 유도 스핀 전류 발생에 초점을 맞추어 나노미터 두께의 강자성체/비자성체 복합 박막에서의 고출력, 광대역, 편광 자유도 등 우수한 특성을 설명한다. 또한 나노미터 두께의 박막을 기반으로 반도체 결합 소자 개발, 대면적 광 소자 개발, 플렉시블 광 소자 개발 등의 다양한 응용 기술 연구를 소개한다. 이를 통해 스핀트로닉 THz파 발생 원리를 이해하고, 차세대 THz 광 소자로서 주목받고 있는 전자의 스핀을 활용한 다양한 응용 연구를 수행하는 데 도움을 주고자 한다.