• Title/Summary/Keyword: Wave impact load

Search Result 87, Processing Time 0.027 seconds

Design of Bow Shape to Decrease Green Water Impact Loading in Regular Waves (규칙파 중 갑판침입수 충격하중 감소를 위한 선수형상 설계)

  • Ha, Yoon-Jin;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.15-22
    • /
    • 2012
  • In this research, the relationship between the bow shape and green water phenomenon on the bow deck of an FPSO was studied using an experimental method. A 140,000 DWT FPSO was used as the objective hull form in the present research. The incident waves were regular types. The heights were 1.0 and 1.5 times the freeboard, and the length was equal in size to LBP. The wave heights and pressures on the deck were measured in experiments. Model tests were performed to determine the effects of bow flare angles, bow shapes, and a forecastle deck. The free heave and pitch conditions were applied to the models in these experiments. From the results of the model tests, an optimized bow shape was designed, which was found to decrease the green water impact loading. The results of this research could be used as fundamental data in the design of a bow shape.

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.

Experimental assessment of slamming coefficients for subsea equipment installations

  • de Oliveira, Allan C;Pestana, Rafael G
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.163-179
    • /
    • 2020
  • Considering the huge demand of several types of subsea equipment, as Christmas Trees, PLEMs (Pipeline End Manifolds), PLETs (Pipeline End Terminations) and manifolds for instance, a critical phase is its installation, especially when the equipment goes down through the water, crossing the splash zone. In this phase, the equipment is subject to slamming loads, which can induce impulsive loads in the installation wires and lead to their rupture. Slamming loads assessment formulation can be found in many references, like the Recommended Practice RP-N103 from DNV-GL (2011), a useful guide to evaluate installation loads. Regarding to the slamming loads, RP-N103 adopt some simplifying assumptions, as considering small dimensions for the equipment in relation to wave length, in order to estimate the slamming coefficient CS used in load estimation. In this article, an experimental investigation based on typical subsea structure dimensions was performed to assess the slamming coefficient evaluation, considering a more specific scenario in terms of application, and some reduction of the slamming coefficient is achieved for higher velocities, with positive impact on operability.

Hydroelastic Responses of a Very Large Floating Structure in Time Domain (시간영역에서 초대형 부유식 해양구조물에 대한 유탄성 운동해석)

  • 이호영;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.18-22
    • /
    • 2000
  • This paper is transient motions of a very large floating structure subjected to dynamic load induced by wave. A time domain method is applied to the hydroelasticity problems for this purpose. The method is based on source-dipole and FEM scheme and on Newmark $\beta$ method to pursuit time step process taking advantage of the memory effect. The present method is appied to hydroelastic response analysis in regular waves and impact responses due to dropping aircraft.

  • PDF

Dynamic Slant Interface Crack Propagation Behavior under Initial Impact Loading (초기 혼합모드 동적 하중을 받는 경사계면균열의 동적 전파거동)

  • Lee, Eok-Seop;Park, Jae-Cheol;Yun, Hae-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The effects of slant interface in the hybrid specimen on the dynamic crack propagation behavior have been investigated using dynamic photoelasticity. The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamic stress field around the dynamically propagating inclined interface crack tip in the three point bending specimens. The dynamic load is applied by a hammer dropped from 0.08m high without initial velocity. The dynamic crack propagation velocities and dynamic stresses field around the interface crack tips are investigated. Theoretical dynamic isochromatic fringe loops are compared with the experimental reults. It is interesting to note that the crack propagating velocity becomes comparable to the Rayleigh wave speed of the soft material of a specimen when slant angle decreases.

  • PDF

A Study on Parameter and Behavior for Composite Steel-Concrete Structure of Sandwich System (샌드위치식 강-콘크리트 복합구조체의 매개변수 및 거동특성 연구)

  • 정연주;정광희;이필승;박성수;황일선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.75-82
    • /
    • 2000
  • A huge offshore structures such as immersed tunnel, ice-resisting wall are continuously subjected to large force from water pressure, wave action and impact loads. Composite steel-concrete structure of sandwich system has profitable advantages for a huge offshore structures. This composite structures should exhibit a high degree of strength and ductility, because of concrete confining effect and the property of steel plate. Therefore, it endures large deformation and absorbs a great deal of energy until failure. In this study, nonlinear analysis for composite steel-concrete structure of sandwich system was carried out, and certify the effects of various parameters, elastic·plastic behavior characteristic, load-carrying and failure mechanism.

  • PDF

Time-Frequency Analysis of Dispersive Waves in Structural Members Under Impact Loads (시간-주차수 신호처리를 이용한 구조용 부재에서의 충격하중에 의한 분석 파동의 해석)

  • Jeong, H.;Kwon, I.B.;Choi, M.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.481-489
    • /
    • 2000
  • A time-frequency analysis method was developed to analyze the dispersive waves caused by impact loads in structural members such as beams and plates. Stress waves generated by ball drop and pencil lead break were recorded by ultrasonic transducers and acoustic emission (AE) sensors. Wavelet transform (WT) using Gabor function was employed to analyze the dispersive waves in the time-frequency domain, and then to find the arrival time of the waves as a function of frequency. The measured group velocities in the beam and the plate were compared with the predictions based on the Timoshenko beam theory and Rayleigh-Lamb frequency equations, respectively. The agreements were found to be very good.

  • PDF

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.