• Title/Summary/Keyword: Wave field calculation

Search Result 101, Processing Time 0.024 seconds

Calculation of the Wave Height Distribution in the Vicinity of Ulsan waters using the Observed Date of Typhoon Maemi (태풍 ‘매미’ 내습시 관측자료를 이용한 울산 해역의 파고 분포 산출)

  • Kim, Kang-Min;Kim, Jong-Hoon;Ryu, Ha-Sang;Jeong, Weon-Mu
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.479-484
    • /
    • 2007
  • For calculation of wave field for design of coastal and port structures, generally the wind fields from inland observation record or the predicted waves from deep water wave transformation model are being used. However, for the first case, as we should revise the wave data adopting correcting parameters depending on the distance from the coast and location, it is difficult to extract water waves from wind field. Furthermore, for the second case, because of the calculation which executed under very large grid sizes in the wide domain, the simulation(wave transformation) implied uncertainty in the near shore area and shallow region. So it's difficult to obtain exact data from the simulation. Thus, in this study the calculation of wave field on shallow water is accomplished using the observed data of typhoon 'Maemi' in the Korea Eastern South sea. Moreover, for the accuracy of the calculated wave field, we compared and studied the observed data of wave height and direction on the vicinity of the Ulsan waters. It is proved that the results of this study is more accurate than the existing method with showing ${\pm}1.3%$ difference between observed and calculated wave height distribution in Ulsan waters

FRACTIONAL FIELD WITH STANDARD FRACTIONAL VECTOR CROSS PRODUCT

  • MANISHA M. KANKAREJ;JAI PRATAP SINGH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.811-819
    • /
    • 2023
  • In this research we have used the definition of standard fractional vector cross product to obtain fractional curl and fractional field of a standing wave, a travelling wave, a transverse wave, a vector field in xy plane, a complex vector field and an electric field. Fractional curl and fractional field for a complex order are also discussed. We have supported the study with calculation of impedance at γ = 0, 0 < γ < 1, γ = 1. The formula discussed in this paper are useful for study of polarization, reflection, impedance, boundary conditions where fractional solutions have applications.

A Study on the Numerical Calculation for Wind Waves During the Passage of Typhoon 'Memi' (태풍 '매미' 내습시 파랑선정에 관한 기초적 연구)

  • LEE GYONG-SEON;KIM HONG-JIN;YOON HAN-SAM;RYU CHEONG-RO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.229-234
    • /
    • 2004
  • A Typhoon wave is generated by wind fields during the Passage of Typhoon. Transporting wind field makes wind wave and swell in the open sea, and then, those wave components are transported in the shallow water. Typhoon waves in the shallow water is generated by Typhoon wind field and incident wave. Bisides, Incident waves to the shallow water are deformated by topographic conditions. This paper estimated the analysis of the Typhoon waves by wind fields and incident waves according to wave action balance equation model. As the result of wave numerical experiment, wave field during the passage of Typhoon 'Memi' in the shallow water is strongly effect by wind fields. Wave action balance equaion can be partially used for Typhoon wave simulations.

  • PDF

Estimating Void Ratio Changes of a Pre-loading Site Using Bender Elements Sensors (벤더 엘리먼트 센서를 이용한 선행 재하공법 현장의 간극비 변화 추정)

  • Kim, Hak-Sung;Jung, Young-Hoon;Kim, Byung-Chul;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1110-1116
    • /
    • 2010
  • Void ratios are one of the key parameters for exact calculation of settlement of soft groundse. In the study, shear wave velocities of a soft ground were used to measure the field void ratio using bender elements sensors. The bender-element probes were installed in situ at the depths of 3, 5 and 8m on a pre-loading site near Incheon, Korea. During 90 days after installation, the changes of shear wave velocity and ground surface settlement were measured. The field void ratio was estimated from measured shear wave velocities. The void ratio estimated by the shear wave velocity measured by bender elements agrees well with the measured values in the field.

  • PDF

Scattering Model for Electrical-Large Target Employing MLFMA and Radar Imaging Formation

  • Wu, Xia;Jin, Yaqiu
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.166-170
    • /
    • 2010
  • To numerically calculate electromagnetic scattering from the electrical-large three-dimensional(3D) objects, the high-frequency approaches have been usually applied, but the accuracy and feasibility of these geometrical and physical optics(GO-PO) approaches, to some extent, are remained to be improved. In this paper, a new framework is developed for calculation of the near-field scattering field of an electrical-large 3D target by using a multilevel fast multipole algorithm(MLFMA) and generation of radar images by using a fast back-projection(FBP) algorithm. The MPI(Message Passing Interface) parallel computing is carried out to multiply the calculation efficiency greatly. Finally, a simple example of perfectly electrical conducting(PEC) patch and a canonical case of Fighting Falcon F-16 are presented.

Analysis of Sediment Transport in the Gaeya Open Channel by Complex Wave Field (복합 파랑장에 따른 개야수로 퇴적물이동 분석)

  • Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • In order to analyze wave propagation, tidal current, and sediment transport in the vicinity of the Gaeya open channel, it was classified into before(CASE1W) and after(CASE2W) installation of various artificial structures, and the calculation results for CASE1W and CASE2W were compared. For wave propagation, the results of incident and reflected waves were derived using the SWAN numerical model, and the tidal current velocity results were derived using the FLOW2DH numerical model for tidal current. The results of the SWAN numerical model and the FLOW2DH numerical model became the input conditions for the SEDTRAN numerical model that predicts sediment transport, and the maximum bed shear stress and suspended sediment concentration distribution near the Gaeya open channel were calculated through the SEDTRAN numerical model. As a result of the calculation of the SWAN numerical model, the wave height of CASE2W was increased by 40~50 % compared to CASE1W because the incident wave was diffracted and superimposed and the reflected wave was generated by about 7 km long northen jetty. As a result of the calculation of the FLOW2DH numerical model, According to the northen breakwater, the northen jetty and Geumrando, CASE2W was calculated 10~30 % faster than CASE1W in the tidal current of the Gaeya open channel. As a result of the calculation of the SEDTRAN numerical model, the section where the maximum bed shear stress is 1.0 N/m2 or more and the suspended concentration is 80mg/L or more was widely distributed in the Gaeya open channel from the marine environment by the complex wave field(incident wave, reflected wave and tidal wave) and the installation of various artificial structures. it is believed that a sedimentation phenomenon occurred in the Gaeya open channel.

Application based on the strictly combined method of BEM and CADMAS-SURF (BEM-CADMAS-SURF 결합해석법에 기초한 수치조파수조의 응용)

  • Kim, Sang-Ho;Yamashiro, Masaru;Yoshida, Akinori;Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • The hybrid numerical model is developed by combining BEM that can calculate the wave motion rapidly under the potential theory and CADMAS-SURF that solves Navier-Stokes equations for the free surface variation near the structure, In the hybrid model the calculation of wave motion in a wide field of wave reflection for deep water area is conducted by BEM but for shallow water area by CADMAS-SURF. Especially the hybrid model can calculate random wave motions for long term period more rapidly with almost similar accuracy than the calculation of wave motion which was carried out by CADMAS-SURF only. In this study the coupling model was applied to the calculation of the strong nonlinear wave motion such as wave runup and overtopping at the coastal structure on the mild-slope bottom and the results of numerical model were compared with the Toyosima's experiments of regular wave runup and Goda's design diagram of ramdom wave overtopping, respectively.

Powering Analysis of Oscillating Foil Moving in Propagating Wave Flow Field (전파하는 파동유장 중 전진하며 동요하는 2차원 날개의 동력해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • In this study, a two-dimensional oscillating foil with forward speed in a propagating wave flow field was considered. The time-mean power to maintain the heaving and pitching motions of the foil was analyzed using the perturbation theory in an ideal fluid. The power, which was a non-linear quantity of the second-order, was expressed in terms of the quadratic transfer functions related to the mutual product of the heaving and pitching motions and incoming vertical flow. The effects of the pivot point and phase difference among the disturbances were studied. The negative power, which indicates energy extraction from the fluid, is shown as an example calculation.

Analysis on Field Applicability of SWAN Nested Model (SWAN Nested model의 현장 적용성 분석)

  • Kim, Kang-Min;Dae, Nam-Ki;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • The recent trend for numerical experiment requires more higher resolution and accuracy. Generally, in the wave field calculation, it starts with a large region formulation first and follows by a separated detailed region formulation by more denser grids for the main interest area considering the geographical and bathymetrical variation. The wave fields resulted from the large region calculation is being introduced into the detail region calculation as the incident waves. In this process there exists a problem of continuity. In order to get over such problem, method of variable gridding system or spectrum sampling, etc., is being used. However, it seems not enough to examine and analyze the related numerical errors. Therefore, it is investigated in this study the field applicability of the most pervasive use of wave model, the nested SWAN model. For this purpose, we made model experiment for two coastal harbours with different tidal environment, and compared and analyzed the result. From the analysis, it was found that both the extracted values, near the boundaries of the large and detail region and the nested formulation of SWAN model, show almost the same and no different between those with different tidal environment conditions. However it is necessary for reducing the numerical errors to set the boundaries for the detailed region outside of the rapid bathymetric change and deeper region.

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.