• 제목/요약/키워드: Wave energy dissipation

검색결과 126건 처리시간 0.037초

다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산 (Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes)

  • 홍기용;에스똘히오메자
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

에너지 감쇠역을 포함하는 파랑장에 대한 반복기법의 적용 (Application of Iterative Procedure to the wave Field with Energy Dissipation Area)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.120-127
    • /
    • 1998
  • An Elliptic model for calculating the combined refraction/diffraction of monochromatic linear waves is developed, including a term which allows for the dissipation of wave energy. Conjugate gradient method is employed as a solution technique. Wave height variations are calculated for localized circular and rectangular dissipation areas. It is shown that the numerical results agree very well with analytical solution in the case of circular damping region. The localized dissipation area creates a shadow region of low wave energy and the recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

스펙트럼 파랑모형에서의 쇄파모형 (Modeling of Wave Breaking in Spectral Wave Evolution Equation)

  • 조용준;유하상
    • 한국해안해양공학회지
    • /
    • 제19권4호
    • /
    • pp.303-312
    • /
    • 2007
  • 주파수영역에서 쇄파로 인한 에너지 소산에 관한 그 동안의 논쟁은 주파수의 함수인 소산항의 구체적 형태를 중심으로 진행되어왔다. 본 연구에서는 추계학적 쇄파모형과 이에 기초한 스펙트럼으로부터 소산항을 유추하였다. 기존의 인식과는 상이하게 소산항은 주파수의 삼차함수인 것으로 판단된다. 검증작업은 SUPERTANK Laboratory Data Collection Project(Krauss et al., 1992)에서 축적된 실험자료를 기초로 진행되었다. 추가적인 검증을 위해 단조해안에서의 Cnoidal 파랑의 천수과정을 스펙트럼 파랑모형과 제시된 쇄파모형을 차용하여 수치모의하였다. 그 결과 쇄패대역에서 진행되는 파랑의 왜도와 비대칭성의 진화과정이 비교적 정확히 모의되는 성과를 얻었다.

경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法) (Permeable Breakwaters Analysis by Using Boundary Element Method)

  • 김남현;淹川淸;최한규
    • 산업기술연구
    • /
    • 제10권
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

일정경사면에서의 파에너지 바닥마찰손실계수 (Frictional Wave Energy Dissipation Factor on Uniform Sloping Beach)

  • 유동훈;엄호식;장문엽
    • 한국해안·해양공학회논문집
    • /
    • 제22권2호
    • /
    • pp.73-78
    • /
    • 2010
  • 파에너지는 쇄파되기 이전까지 주로 해저면과의 마찰력에 의하여 감소한다. 파마찰력을 산정하기 위한 연구는 여러 연구자들에 의해 진행되어 왔으며 어느 특정지점에서의 파마찰력 또는 파마찰손실률은 선형파이론으로 주어지는 해저면 입자유속과 연관된 파마찰계수의 도입으로 상당히 정확하게 간단하게 산정할 수 있다. 그러나 장구간에 걸쳐 파마찰력에 의하여 점차적으로 감소되는 파고변이는 상당한 반복 과정을 거쳐야 산정할 수 있었다. 본 연구에서는 기존 경험식을 이용해 전난류, 완난류 경우에 대해 일정경사면에서 천수효과와 마찰손실에 의한 파고 변화를 비교적 간단한 방법으로 추정하는 방법을 제시하였다. 해빈경사가 일정할 때 파고 변이률은 천수계수와 파고 마찰손실계수의 곱으로 간단히 구할 수 있다. 실제 해안과 비슷한 조건의 경우에 대하여 반복시산 과정으로 구한 수치와 간편 산정식으로 간단히 계산한 결과를 비교하여 제시하였다.

東海에서의 파랑추산을 위한 심해파랑모형에 대한 연구 (Deep Water Wave Model for the East Sea)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.116-128
    • /
    • 1999
  • A deep water wave prediction model applicable to the East Sea is presnted. This model incorporates rediative transter of energy specrum, atmospheric input form the wind, nonlinear interaction, and energy dissipation by white capping. The propagation scheme by Gadd shows satisfactory results and the characteristics of the nonlinear interaction is simulated well by discrete interaction approximatiion. The application of the model to the sea around the Korean Peninsula shows reasonable agreement with the observation.

  • PDF

복합단면지형에서의 파랑의 쇄파변형특성 (Wave Breaking Characteristics over Composite Slope Section)

  • 권혁민;요시미고다;최한규
    • 한국해안해양공학회지
    • /
    • 제7권2호
    • /
    • pp.135-140
    • /
    • 1995
  • 쇄파감쇠과정을 포함한 파랑변형이 규칙파에 의해 관찰되었다. 파랑변형의 기초data를 얻기 위해 사면경사 1/20 및 1/10을 step에 연결한 지형을 설치하여 실험을 실시하였다. 쇄파 후 파고는 감소하기 시작하여 쇄파점으로부터 임의의 거리에 일정한 값을 나타낸다. 본 연구는 안정파고에 관한 일반식을 가지고 신파랑변형모델을 제안한다. 모델은 실험치와 비교하여 급격한 수심변화에도 쇄파 전후의 파랑특성을 잘 설명함을 알 수 있었다.

  • PDF

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

파랑 중 제주 "테우" 틈에 의한 파 흡수효과 (Efficiency of wave absorption by the porous of "Taewoo" of Jeju in regular seaway)

  • 이창헌;최찬문;안장영;조일형
    • 수산해양기술연구
    • /
    • 제49권2호
    • /
    • pp.144-152
    • /
    • 2013
  • In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.