• Title/Summary/Keyword: Wave current interaction

Search Result 99, Processing Time 0.024 seconds

Design Wave Transformation in Finite Depth due to Wave-Current Interaction (파랑-해류 상호작용에 의한 천해 설계파랑 변형)

  • Kang, See-Whan;Ahn, Suk-Jin;Eom, Hyun-Min;Cho, Hyu-Sang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Wave-current interaction due to strong ambient currents causes to alter wave properties such as wave height, wave profile and wave spectrum. In this study we first examined the SWAN model's applicability by comparing with an analytical solution of Suh et al. (1994) for wave-current interaction in finite water-depth. Numerical experiments using SWAN model have been conducted for Garolim Bay to estimate the design waveheights influenced by strong tidal currents. For the design wave periods of 8~10 sec, the design wave height of 3 m in NNW direction was increased by up to 40% when the incident waves encounter the opposing currents of 1.4 m/s while the wave height was reduced by 26% due to the following currents of 1.1 m at the bay mouth. This result indicates that the effect of wave-current interaction must be included to determine the design wave height if there exists a strong current.

Numerical simulation of wave and current interaction with a fixed offshore substructure

  • Kim, Sung-Yong;Kim, Kyung-Mi;Park, Jong-Chun;Jeon, Gyu-Mok;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.188-197
    • /
    • 2016
  • Offshore substructures have been developed to support structures against complex offshore environments. The load at offshore substructures is dominated by waves, and deformation of waves caused by interactions with the current is an important phenomena. Wave load simulation of fixed offshore substructures in waves with the presence of uniform current was carried out by numerical wave tank technique using the commercial software, FLUENT. The continuity and Navier-Stokes equations were applied as the governing equations for incompressible fluid motion, and numerical wavemaker was employed to reproduce offshore wave environment. Convergence test against grids number was carried out to investigate grid dependency and optimized conditions for numerical wave generation were derived including investigation of the damping effect against length of the damping domain. Numerical simulation of wave and current interactions with fixed offshore substructure was carried out by computational fluid dynamics, and comparison with other experiments and simulations results was conducted.

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction (파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1463-1476
    • /
    • 2014
  • In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

The Local Scour around Submarine Pipelines in the Interaction Region Combined with Waves and Currents (파랑과 정상흐름의 공존역에서 해저관로 주변의 국부세굴)

  • Kim, Kyoung-Ho;Lee, Ho-Jin;Kim, Wan-Shik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.510-521
    • /
    • 2008
  • In the study, experiments are performed in the interaction region combined with wave and current to investigate the characteristics of local scour around submarine pipelines. Wave generator and current generator are used for the experiments and two current directions were used; co-direction and counter direction to the wave. The local scour depths around the pipeline are obtained according to the various pipe diameters(D), wave periods(T), wave heights(H), and current velocities(V). The experiments show that the maximum equilibrium local scour depth increases with pipe diameter, wave period, wave height, and current velocity. Using the experimental results, the correlations of scour depth and parameters such as Shields parameter($\theta$), Froude number(Fr), period parameter, Keulegan-Carpenter number(KC), Ursell number($U_R$), modified Ursell number($U_{RP}$) and ratio of velocities($U_{c}/(U_{c}+U_{m})$) are analyzed. In the interaction region combined with waves and currents, Froude number and Shields parameter are found the main parameters to cause the local scour around the submarine pipelines and this means that current governs the scour within any limits of the currents.

Prediction Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Numerical Simulation of Jet-like Currents Influenced by Irregular Waves (불규칙 파랑의 영향을 받는 유사제트류의 수치모의)

  • Choi, Jun-Woo;Park, Won-Kyung;Bae, Jae-Seok;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.491-497
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations were conducted using a model system of REF/DIF(a wave model) and SHORECIRC(a current model). In the simulations, irregular waves refracted due to the jet-like opposing current were focused along the centerline of current, and the jet-like current was spreaded earlier when the wave heights become larger. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the radiation stress gradients acting in transverse direction have a more significant effect on the jet-like current than its gradients acting in flowing direction which tend to accelerate the current do. In conclusion, it is indispensible to take into account the interaction between waves and current when the jet-like current such as river mouth meets opposing waves.

LOCALLY ENRICHED QUADTREE GRID NUMERICAL MODEL FOR NEARSHORE CIRCULATION IN THE SURF ZONE

  • Park, Koo-Yong
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.187-197
    • /
    • 2000
  • This paper describes an adaptive quadtree-based 2DH wave-current interaction model which is able to predict wave breaking, shoaling, refraction, diffraction, wave-current interaction, set-up and set-down, mixing processes (turbulent diffusion), bottom frictional effects, and movement of the land-water interface at the shoreline. The wave period-and depth-averaged governing equations are discretised explictly by means of an Adams-Bashforth second-order finite difference technaique on adaptive hierarchical staggered quadtree grids. Grid adaptation is achieved through seeding points distributed according to flow criteria(e.g. local current gradients). Results are presented for nearshore circulation at a sinusoidal beach. Enrichment permits refined modelling of important localised flow features.

  • PDF

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.