• Title/Summary/Keyword: Wave Velocity

Search Result 2,368, Processing Time 0.027 seconds

Full Waveform Inversion using a Cyclic-shot Subsampling and a Reference-shot Subset (주기적 송신원 추출과 참조 송신원 부분집합을 이용한 완전 파형 역산)

  • Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.

Estimation of Vertical Load Capacity of PCFT Hybrid Composite Piles Using Dynamic Load Tests (동재하시험을 통한 긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 연직지지력 평가)

  • Park, Nowon;Paik, Kyuho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • To determine the optimum dynamic load test analysis for PCFT (Prestressed Concrete Filled steel Tube) hybrid composite piles that PCFT piles are connected to the top of PHC piles, the dynamic load tests and CAPWAP analyses were performed on two hybrid composite piles with steel pipe and PCFT piles as upper piles. The results of the dynamic load tests and CAPWAP analyses showed that the particle velocity measured in PCFT hybrid composite piles was equal to the wave speed of PHC piles when the strain gauges and accelerometers are attached to the surface of inner composite PHC pile after removing the steel pipe in the upper PCFT pile. In addition, when assuming that the material of that upper PCFT pile was the same as that of the lower PHC pile and the cross-sectional area of the steel pipe in upper PCFT pile was converted to that for concrete through the pile model (PM) in CAPWAP analysis, the accuracy of the CAPWAP analysis result for PCFT hybrid composite piles was very high.

Ionospheric Responses to the Earthquake in the Gulf of Alaska and the Kusatsu-Shiranesan Volcanic Eruption on 23 January 2018

  • Shahbazi, Anahita;Park, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Numerous research revealed a strong association between the ionospheric perturbations and various natural hazards. The ionospheric measurements from Global Navigation Satellite System (GNSS) observations provide the state of electron contents in the ionosphere that contributes to investigate the source events. In this study, two geophysical events occurred on 23 January 2018, the 7.9 Mw earthquake in Alaska and Kusatsu-Shiranesan volcanic eruption in Japan, are examined to characterize the fingerprint of each event in the ionosphere. Firstly, we extracted the Total Electron Content (TEC) from GNSS measurements, then isolated disturbed wave signatures from the TEC measurements that is referred to as a traveling ionospheric disturbance (TID). As TIDs are short-term ionospheric variations, the major trend of GNSS TEC measurements should be properly removed. We applied a natural neighbor interpolation method together with a leave-one-out cross validation technique for detrending. After detrending the TEC, the remaining signals are further enhanced by applying a band-pass filter and TIDs are detected from them. Finally, the detected TIDs are verified as the response of the ionosphere to Kusatsu-Shiranesan volcanic eruption and Gulf of Alaska earthquake which propagated through the ionosphere with an average velocity of 530 m/s and 724 m/s, respectively. In addition, a coherence analysis is conducted to discriminate between the signatures from a volcanic explosion and an earthquake. The analysis reveals the TID waveforms from each single event are highly correlated, while a low correlation is found between the TIDs from the earthquake and explosion. This study supports the claim that different geophysical events induce the distinctive characteristics of TIDs that are detectable by the ionospheric measurements of GNSS.

Seven Days Breaking Up Prolonged Sitting Improves Systemic Endothelial Function in Sedentary Men (일주일간의 간헐적 좌식차단의 혈관기능 개선 효과)

  • Park, Soo Hyun;Yoon, Eun Sun;Jae, Sae Young
    • Exercise Science
    • /
    • v.26 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • PURPOSE: To examine the cumulative (7 days) effect of breaking up prolonged sitting on systemic endothelial function in sedentary men. METHODS: Thirty sedentary men ($33.93{\pm}5.72years$) participated in two randomized 7 days sitting trial (Sit group (control) vs. Breaks group). The protocol of Breaks group is as follows: 4-minute of moderate-intensity marching in place (walking) every 1 hour during business hour (total: 8 breaks/day). Assessment of brachial artery endothelial function using flow-mediated dilation (FMD) and arterial stiffness indices (augmentation index, arterial pressure and pulse wave velocity) were measured before and after 7 days treatment. RESULTS: Brachial artery FMD significantly increased after 7 days breaking up prolonged sitting treatment (Breaks groups, $9.65{\pm}2.61$ to $9.62{\pm}2.6%$) compared with 7 days prolonged sitting (Sit group, $8.37{\pm}3.41$ to $10.11{\pm}3.75%$) (interaction effect, p=.004). Arterial pressure (AP) significantly increased after treatment (Breaks group, $2.75{\pm}2.19$ to $2.38{\pm}1.63mmHg$, p=.002) in Sit group but there was no change (Sit group, $1.00{\pm}3.18$ to $2.50{\pm}9.23mmHg$) in Breaks groups (interaction effect, p=.008). CONCLUSIONS: These finding show that 7 days regular breaking up prolonged sitting improve in FMD, compared with prolonged sitting. Therefore, regular breaking up prolonged sitting may improve systemic endothelial function in sedentary men.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Comparison of Liquefactive Hazard Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 재해도 비교)

  • Song, Seong-wan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.5-15
    • /
    • 2022
  • Due to the Pohang earthquakes in 2017, concerns are increasing that Korea is no longer safe from liquefaction, and needs the research to take proper measures for liquefaction. Liquefaction is defined as the loss of shear strength of the ground. In order to solve this problem, many studies, such as composing a liquefaction hazard map using Liquefaction Potential Index (LPI), have been conducted. However, domestic researches on the comparative analysis of liquefaction prediction results are not sufficient. Therefore, in this study, liquefaction hazard maps were composed using the standard penetration test results, shear wave velocity values, and cone penetration test results. After that, the precision was determined by comparing the calculated LPI using the geotechnical information and predicted LPI via spatial interpolation target. Based on the analysis results, the predicted LPI value using geotechnical information is more precise than using calculated LPI value.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.

Assessment of Seismic Response Spatial Variation Through the Analysis of Earthquake Records at Hamaoka Nuclear Power Plant (하마오카 원자력 발전소 지진 기록 분석을 통한 지진응답의 공간적 변화 평가)

  • Ji, Hae Yeon;Ha, Jeong Gon;Kim, Min Kyu;Hahm, Dae Gi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.181-190
    • /
    • 2022
  • In assessing the seismic safety of nuclear power plants, it is essential to analyze the structures using the observed ground motion. In particular, spatial variation in which the characteristics of the ground motion record differ may occur if the location is different within the site and even if the same earthquake is experienced. This study analyzed the spatial variation characteristics of the ground motion observed at the structure and site using the earthquake records measured at the Hamaoka nuclear power plant. Even if they were located on the same floor within the same unit, there was a difference in response depending on the location. In addition, amplification was observed in Unit 5 compared to other units, which was due to the rock layer having a slower shear wave velocity than the surrounding bedrock. Significant differences were also found in the records of the structure's foundation and the free-field surface. Based on these results, the necessity of considering spatial variation in the observed records was suggested.

VS Prediction Model Using SPT-N Values and Soil Layers in South Korea (표준관입시험 및 시추공 정보를 이용한 국내 전단파속도 예측)

  • Heo, Gi-Seok;Kwak, Dong-Youp
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.53-66
    • /
    • 2022
  • The national ground survey database (GeoInfo) distributes numerous ground survey data nationwide. Many standard penetration test results exist in this database; however, the number of shear wave velocity (VS) data is small. Hence, to use abundant standard penetration test-N values to predict VS, this study proposed a new empirical N-VS relationship model using GeoInfo data. The proposed N-VS model is a single equation regardless of geological layer types; the layer type only specifies the upper limit of VS. To validate the proposed model, residual analysis was performed using a test dataset that was not used for the model development. Therefore, this study's proposed model performed better than N-VS models from previous studies. Since the N-VS model in this study was developed using sufficient data from GeoInfo, we expect that it is the most applicable to GeoInfo dataset for VS prediction.

Smart monitoring system using electromagnetic waves to evaluate the integrity of reinforced concrete structural elements

  • Jong-Sub Lee;Dongsoo Lee;Youngdae Kim;Goangseup Zi;Jung-Doung Yu
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.293-306
    • /
    • 2023
  • This study proposes and demonstrates a smart monitoring system that uses transmission lines embedded in a reinforced concrete structure to detect the presence of defects through changes in the electromagnetic waves generated and measured by a time-domain reflectometer. Laboratory experiments were first conducted to identify the presence of voids in steel-concrete composite columns. The results indicated that voids in the concrete caused a positive signal reflection, and the amplitude of this signal decreased as the water content of the soil in the void increased. Multiple voids resulted in a decrease in the amplitude of the signal reflected at each void, effectively identifying their presence despite amplitude reduction. Furthermore, the electromagnetic wave velocity increased when voids were present, decreased as the water content of the soil in the voids increased, and increased with the water-cement ratio and curing time. Field experiments were then conducted using bored piles with on-center (sound) and off-center (defective) steel-reinforcement cage alignments. The results indicated that the signal amplitude in the defective pile section, where the off-center cage was poorly covered with concrete, was greater than that in the pile sections where the cage was completely covered with concrete. The crosshole sonic logging results for the same defective bored pile failed to identify an off-center cage alignment defect. Therefore, this study demonstrates that electromagnetic waves can be a useful tool for monitoring the health and integrity of reinforced concrete structures.