• Title/Summary/Keyword: Wave Structure

Search Result 2,789, Processing Time 0.033 seconds

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

Wave propagation analysis of the ball in the handball's game

  • Yongyong Wang;Qixia Jia;Tingting Deng;Mostafa Habibi;Sanaa Al-Kikani;H. Elhosiny Ali
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.729-742
    • /
    • 2023
  • It is a recent attraction to the mechanical scientists to investigate state of wave propagation, buckling and vibration in the sport balls to observe the importance of different parameters on the performance of the players and the quality of game. Therefore, in the present study, we aim to investigate the wave propagation in handball game ball in term of mass of the ball and geometrical parameters wit incorporation of the viscoelastic effects of the ball material into account. In this regard, the ball is modeled using thick shell structure and classical elasticity models is utilized to obtain the equation of motion via Hamilton's principle. The displacement field of the ball model is obtained using first order shear deformation theory. The resultant equations are solved with the aid of generalized differential quadrature method. The results show that mass of the ball and viscoelastic coefficient have considerable influence on the state of wave propagation in the ball shell structure.

A Study on the Disbonding Detection of FRP Honeycomb Sandwich Structure by Ultrasonic Methods (초음파를 이용한 복합재료 하니캄 구조물의 Disbonding 검출에 관한 연구)

  • Cho, K.S.;Lee, J.S.;Lee, J.O.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.23-30
    • /
    • 1991
  • In this study the bonding quality evaluation of FRP honeycomb structure was performed by the ultrasonic C-Scan method and stress wave factor measurements. These NDT techniques could be well applied to the disbonding detection of FRP honeycomb structures. Especially, stress wave factor (SWF) measurement is expected to be a useful technique in field applications.

  • PDF

Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column (진동수주형 파력발전시스템을 탑재한 공기주입식 부유식방파제의 동적거동해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.305-314
    • /
    • 2017
  • Ocean wave energy harvesting is still too expensive despite developing a variety of wave energy converter (WEC) devices. For the cost-effective wave energy harvesting, it can be an effective measure to use existing breakwaters or newly installed breakwaters for both wave control and energy harvesting purposes. In this study, we investigated the functionality of both breakwater and wave-power generator for the oscillating water column (OWC)-type wave energy converter (WEC) installed in a pneumatic floating breakwater, which was originally developed as a floating breakwater. In order to verify the performance of the breakwater as a WEC, the air flow velocity from air-chamber to WEC has to be evaluated properly. Therefore, air flow velocity, wave transformation and motion of floating structure was numerically implemented based on BEM from linear velocity potential theory without considering the compressibility of air within the chamber. Air pressure, meanwhile, was assumed to be fluctuated by the motions of structure and the water level change within air-chamber. The validity of the obtained values can be determined by comparing the previous results from the numerical analysis for different shapes. Based on numerical model results, wave transformation characteristics around OWC system mounted on the fixed and floating breakwaters, and motions of the structure with air flow velocities are investigated. In summary, all numerical results are almost identical to the previous research considering air compressibility. Therefore, it can be concluded that this analysis not considering air compressibility in the air chamber is more efficient and practical method.

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model (Quadratic Volterra 모델을 이용한 자유지지 라이저의 동적 응답 시계열 예측)

  • Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.274-282
    • /
    • 2014
  • Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Wave overtopping control by the use of ecosystem control structures (생태계 제어구조물의 월파제어 특성)

  • 김현주;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 1997
  • Coastal diaster induced by waves and countermeasures were investigated in the viewpoint of reduction of overtopping rate with enviroment in fishing port. The reduction method of wave overtopping rate using ecosystem control structures was proposed and studied on the efficiency by hydraulic and numerical experiments. The estimation models on wave overtopping rate was proposed after comparing previous models with dimensional analysis and experimental results. Control function o fwave overtopping by use of ecosystem controlstructures was simulated and discussed with combining wave shoaling-dissipation-breaking deformation model around ecosystem control structures and newly proposed calculation model for wave overtopping rate. Feasiblilty of ecosystem control structures could be confirmed for reduction of wave overtopping and fisheries-based multipurpose development of coastal zone.

  • PDF

Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating (점탄성 유동벽면의 파동 감쇠 특성 해석)

  • Kulik Victor M.;Jung, Kwang-Hyo;Chun Ho-Hwan;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.