• 제목/요약/키워드: Wave Structure

검색결과 2,781건 처리시간 0.03초

투과성 해안구조물 내-외부 파동장의 수리특성에 관한 순치모의 (Numerical Simulation of Internal-External Wave Field Interaction in Permeable Coastal Structures)

  • 차종호;윤한삼;류청로;강윤구
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.18-23
    • /
    • 2008
  • This study investigated interactions between the internal-external wave field of a permeable coastal structure consisting of rubble. The study examined the application criteria of an existing numerical model (CADMAS-SURF V.4.0) and proposed a modified method to provide reasonable results. In particular, the study focused on and emphasized the water surface profiles in front of a structure, wave run-up/run-down on a slope, and internal water level fluctuations due to the drag coefficient and porosity of a rubble mound structure. In conclusion, the result show that when the vertical fluctuations of the internal water levels in permeable coastal structures exhibited high-quality representation. Sane responses can be seen for wave run-up/run-down characteristics on its slopes.

규칙파 중 반잠수식 해양구조물 주위의 런업에 관한 실험 연구 (Experimental Study of Wave Run-up on Semi-submersible Offshore Structures in Regular Waves)

  • 김남우;남보우;조윤상;성홍근;홍사영
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.6-11
    • /
    • 2014
  • This paper presents the results of an experimental study of wave run-ups on a semi-submersible offshore structure. A series of model tests with a 1:80 scale ratio were carried out in the two-dimensional wave basin of MOERI/KIOST. The experimental model had two columns and one pontoon. The model was fixed and wave elevations were measured at five points per column. Two different draft (operational & survival) conditions and three wave heights were considered under regular wave conditions. First, the nonlinear characteristics of wave run-ups are discussed by using the time series data. Then, the wave heights are compared with numerical results based on the potential flow model. The comparison shows fairly good correlation between the experiments and computations. Finally, wave run-ups under the operational and survival conditions are suggested.

Review: Development of Numencal Wave Flume CABMAS-SURF (SUper Roiler Flume for Computer Aided Design of MAritime Structure)

  • Fujima, Koji
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2002년도 한국해안해양공학발표논문집 Proceedings of Coastal and Ocean Engineering in Korea
    • /
    • pp.1-13
    • /
    • 2002
  • For design of maritime structure, it is necessary to evaluate the effect and stability of the structure against wave action. Laboratory model experiments and their empirical formulas are mainly used to estimate those at present, although empirical formulas have a problem of accuracy and hydraulic experiments of cost and duration. In addition, performance-based design, which may be popularized as a new design concept in the near future, requires much more information than that obtained by empirical formulas and laboratory tests. Thus, numerical simulation may become more important hereafter for structure design. (omitted)

  • PDF

Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducers

  • Mohseni, H.;Ng, C.T.
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.583-593
    • /
    • 2017
  • Applications of fibre-reinforced polymer (FRP) composites for retrofitting, strengthening and repairing concrete structures have been expanded dramatically in the last decade. FRPs have high specific strength and stiffness compared to conventional construction materials, e.g., steel. Ease of preparation and installation, resistance to corrosion, versatile fabrication and adjustable mechanical properties are other advantages of the FRPs. However, there are major concerns about long-term performance, serviceability and durability of FRP applications in concrete structures. Therefore, structural health monitoring (SHM) and damage detection in FRP-retrofitted concrete structures need to be implemented. This paper presents a study on investigating the application of Rayleigh wave for detecting debonding defect in FRP-retrofitted concrete structures. A time-of-flight (ToF) method is proposed to determine the location of a debonding between the FRP and concrete using Rayleigh wave. A series of numerical case studies are carried out to demonstrate the capability of the proposed debonding detection method. In the numerical case studies, a three-dimensional (3D) finite element (FE) model is developed to simulate the Rayleigh wave propagation and scattering at the debonding in the FRP-retrofitted concrete structure. Absorbing layers are employed in the 3D FE model to reduce computational cost in simulating the practical size of the FRP-retrofitted structure. Different debonding sizes and locations are considered in the case studies. The results show that the proposed ToF method is able to accurately determine the location of the debonding in the FRP-retrofitted concrete structure.

Numerical simulation of wave slamming on 3D offshore platform deck using a coupled Level-Set and Volume-of-Fluid method for overset grid system

  • Zhao, Yucheng;Chen, Hamn-Ching;Yu, Xiaochuan
    • Ocean Systems Engineering
    • /
    • 제5권4호
    • /
    • pp.245-259
    • /
    • 2015
  • The numerical simulation of wave slamming on a 3D platform deck was investigated using a coupled Level-Set and Volume-of-Fluid (CLSVOF) method for overset grid system incorporated into the Finite-Analytic Navier-Stokes (FANS) method. The predicted slamming impact forces were compared with the corresponding experimental data. The comparisons showed that the CLSVOF method is capable of accurately predicting the slamming impact and capturing the violent free surface flow including wave slamming, wave inundation and wave recession. Moreover, the capability of the present CLSVOF method for overset grid system is a prominent feature to handle the prediction of wave slamming on offshore structure.

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

파력발전기용 증속 기구의 구조 설계에 관한 연구 (A study on Structure Design of Speed increaser Mechanism for Wave-Force Generator)

  • 황정건;김봉주;신중호;권순만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1266-1269
    • /
    • 2004
  • With increasingly wide needs for a new energy source, many operation types of a wave-forced generation have been studied. To obtain an economically avaliable energy, it is imperative that the speed of the in put wave should be increased by a proper mechanism. In this study, we propose a new speed-increaser mechanism for the wave-force generation using a well-known Stephenson mechanism. In this paper, we have analysed kinematically the proposed speed-increasing mechanism. then a computer program based on the C++ language is developed to prove the validity of our mechanism and to simulate a wave-forced generation.

  • PDF

Numerical Study of Wave Run-up around Offshore Structure in Waves

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.61-66
    • /
    • 2016
  • This study presents the wave run-up height and depression depth around offshore cylindrical structures according to the wave period. The present study employs the volume of fluid method with the realizable turbulence model based on a commercial computational fluid dynamics software called the "STAR-CCM+" to simulate a 3D incompressible viscous two-phase turbulent flow. The present results for the wave run-up height and depression depth with regard to the wave period are compared with those of the relevant previous experimental and numerical studies.

감쇠계수를 이용한 Wave-Guide형 노반구조의 방진성능 평가 (Vibration reduction Efficiency of the Wave-Guide typed Roadbed Structures using the Attenuation Coefficient)

  • 이일화;황선근;조성호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.650-655
    • /
    • 2010
  • The ground vibration which is induced by train leads defect and crack of neighborhood structure. Consequently, in order to reduce the train vibration, it is need to appropriate countermeasure. Wave-guide typed roadbed induce the train vibration to a channel wave forms using the difference of the track layer's stiffness. Therefore train vibration is restrictively attenuated along the longitudinal direction of the track. 5 kind of wave-guide typed roadbed structure is selected in this paper. A finite element, time history, linear spectrum, transfer function and damping ratio analysis are performed to evaluate the vibration reduction efficiency as the wave-guide roadbed.

  • PDF

탄성지지된 시스템의 마운트 고체음저감 성능에 관한 연구 (A Study on Mount Performance for Structure-Borne Noise Reduction in Resiliently Mounted System)

  • 김현실;김재승;김봉기
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2E호
    • /
    • pp.50-55
    • /
    • 2007
  • SBN (Structure-Borne Noise) reduction in resiliently mounted machineries are predicted by using mass-spring model and wave model. In mass-spring model, mount is modeled as a spring, while in wave model, mount is considered as an equivalent elastic rod for taking account into longitudinal wave propagation. The predictions for SBN reduction through mounts are compared to the measurements for four different pumps. It is found that the mass-spring model is valid only in low frequency range below few hundred Hz, while for high frequency ranges longitudinal wave propagation in the mount must be considered to explain the measurements. It is also shown that impedance of the floor slightly affects low frequency behaviour in mass-spring and wave model below 50 Hz - 80 Hz, so that in engineering practice the effect of floor impedance may be neglected in computing mount performance.