• 제목/요약/키워드: Wave Pressure

검색결과 2,085건 처리시간 0.025초

축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성 (Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer)

  • 신동신
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

On wave propagation of football ball in the free kick and the factors affecting it

  • Xumao Cheng;Ying Wu
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.669-672
    • /
    • 2023
  • In this research, the researcher has examined the factors affecting the movement of the soccer ball and will show that the effects such as air resistance, altitude above sea level, wind, air pressure, air temperature, air humidity, rotation of the earth, changes in the earth's gravitational acceleration in different areas. It, the geographical length and latitude of the launch point, the change of gravitational acceleration with height, the change of pressure with height, the change of temperature with height and also the initial spin (Magnus effect) affect the movement of projectiles (especially soccer ball). We modelled th ball based on shell element and derive the motion equations by energy method. Finally, using numerical solution, the wave of the ball is studied. The influences of various parameters are investigated on wave propagation of the ball. Therefore, in short, it can be said that the main factors that play a major role in the lateral deviation of the hit ball are the initial spin of the ball and the wind.

밀장전 발파압력의 확률론적 예측 (Probabilistic Estimation of Fully Coupled Blasting Pressure)

  • 박봉기;이인모;김동현;이상돈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.391-398
    • /
    • 2004
  • The propagation mechanism of a detonation pressure with fully coupled charge is clarified and the blasting pressure propagated in rock mass is derived from the application of shock wave theory. Probabilistic distribution is obtained by using explosion tests on emulsion and rock property tests on granite in Seoul and then the probabilistic distribution of the blasting pressure is derived from their properties. The probabilistic distributions of explosive properties and rock properties show a normal distribution so that the blasting pressure propagated in rock can be also regarded as a normal distribution. Parametric analysis was performed to pinpoint the most influential parameter that affects the blasting pressure and it was found that the detonation velocity is the most sensitive parameter. Moreover, uncertainty analysis was performed to figure out the effect of each parameter uncertainty on the uncertainty of blasting pressure. Its result showed that uncertainty of natural rock properties constitutes the main portion of blasting pressure uncertainty rather than that of explosive properties.

  • PDF

혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구 (The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid)

  • 정현석;김정훈;김주원;김종수
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

단파장 영역에서 운항 자세가 KCS의 선체 저항에 미치는 영향 (Effects of Trim Conditions on Ship Resistance of KCS in Short Waves)

  • 김연주;이상봉
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.258-266
    • /
    • 2017
  • Numerical simulations of turbulent two phase flows around KCS have been performed to investigate effects of trim conditions on ship resistance of KCS in short waves by utilizing waves2foam. The wave lengths of LPP/2 and LPP/4 with 1m and 2m wave heights were imposed at inlet boundary. The resistance reduction at 2m trim by head and the increase of resistance at trims by stern were observed regardless of wave lengths and wave heights. The hull pressure on fore-and-aft rather than wave patterns around bulbous bows was mainly responsible for the total resistance coefficients of KCS in short waves. A phase diagram of contribution of hull pressure to the total resistance coefficients disclosed that the phase of representing the maximum resistance in time history played an important role in the effect of trim conditions on ship resistance of KCS in short waves.

기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구 (A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow)

  • 전구식;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

Lift of and Wave Breaking behind a Moving Submerged Body with Shallow Submergence

  • Lee, Seung-Joon;Kim, Hyoung-Tae
    • Journal of Hydrospace Technology
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 1996
  • We consider the following two questions mainly in this study. First one is how the free surface hayes affect the lift of a shallowly submerged moving body. For this matte., we reinterpret the theoretical results of Kochin(1936), and point out that the high Froude number approximation is not always on the safer side. Second one is what sort of dimensionless parameters determine the occurrence of wave breaking behind a moving submerged body. Temporarily before getting a better answer, we propose that the two-parameter-plane, namely, the plane of the Froude number and the square root of the ratio of the submerged depth and the body length, may be used for predicting the possibility of wave breaking behind the submerged body. A region in the parameter plane is put forth as that of wave breaking, and the validity of this proposal is shown by its agreement with the existing experimental data of Parkin et al(1955) and those of Duncan(1983). Finally, linear and nonlinear numerical results are compared with the existing experimental data to see in what range of the parameters the linear and nonlinear theory case predict the wave field and the pressure on the body with reasonable accuracy. However, since the experimental data, which offer both the pressure and wave elevation for a submerged moving body, are very scarce, much cannot be attained through this comparative study. Hence, it is strongly recommended to carry out well planned experiments to get such data.

  • PDF

관의 경사출구로부터 방출되는 펄스파의 전파특성 (Propagation Characteristics of the Impulse Wave Discharged from the Inclined Exit of a Pipe)

  • 이동훈;이명호;권용훈;김희동
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.943-949
    • /
    • 2002
  • The propagation of the impulse wave discharged from the Inclined exit of a pipe is investigated through shock tube experiment and numerical computations. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident shock wave Mach number between 1.1 and 1.4. In the shock tube experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. Computations using the two-dimensional. unsteady, compressible, Euler equations are carried out to represent the experimented impulse waves. Computed Schlieren images predict the experimented impulse waves with a good accuracy. The results obtained show that for the radial direction the peak pressure of the impulse wave discharged depends upon the Inclined angle of the exit of the pipe. but for the axial direction it is almost constant regardless of the inclined angle of the pipe exit.

케이슨 방파제 바닥판 단부 지지력 저감방안에 대한 고찰 (Consideration on Ways to Reduce a Edge Pressure at Bottom Plate of Caisson Breakwaters)

  • 박우선;이병욱
    • 한국해안·해양공학회논문집
    • /
    • 제32권5호
    • /
    • pp.331-339
    • /
    • 2020
  • 본 연구에서는 케이슨 방파제 바닥판 단부 지지력 저감방안에 대해서 고찰하였다. 단부 지지력에 영향을 미치는 핵심변수로 설치수심, 마루높이, 설계파고 및 주기, 방파제 상부구조의 무게중심 위치 등을 선정하여, 이 핵심변수의 변화에 따라 단부 지지력이 어떻게 변하는지를 해석적으로 살펴보았다. 설계파력은 설계기준에서 제시하고 있는 파력식을 적용하여 산정하였으며, 설계파력에 대해 활동과 전도에 대해 안전율 1.2를 갖도록 상부구조 안정중량과 케이슨 최소 폭을 결정하여 적용하였다. 해석결과, 단부 지지력은 수심 증가에 따라 빠르게 증가하여, 일정 수심 이상(해석조건 내에서는 20 m)이 되면 허용지반지지력을 상회할 수 있고, 마루높이가 증가하면 단부 지지력이 완만히 선형적으로 증가하지만, 파고와 주기의 증가에 따라서는 감소함을 확인하였다. 또한, 이러한 단부 지지력은 상부구조 무게중심을 외해측으로 이동시켜 상당 수준 완화(해석조건 내에서는 케이슨 폭의 5% 이동시키면 20% 이상 저감 가능)시킬 수 있음을 확인하였다. 이번 해석결과와 최근에 수행된 연구결과에 기초하여 설계 시 사용할 수 있는 단부 지지력 저감방안을 제시하고 그 적용성을 평가하였다.

4 행정 가솔린 엔진 내의 다양한 배기 파이프 직경 변화에 따른 실험과 수치해석 (Computational and Experimental Analysis of Variable Exhaust Pipe Diameters in Four-Stroke Gasoline Engine)

  • 최석천;이해종;신유식;정한식;정효민;이광영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.684-689
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF