• Title/Summary/Keyword: Wave Direction

Search Result 1,140, Processing Time 0.022 seconds

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.

Experimental Study on Force and Yaw Moment Acting on Ship in Regular Wave with Various Wave Direction

  • Nguyen, Van-Minh;Yoon, Hyeon-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.19-21
    • /
    • 2017
  • Ship maneuvering performance is usually estimated in calm water conditions which provide valuable information about the ship maneuvering characteristics at the early design stage. However, the course-keeping ability and the maneuvering performance of a ship can be significantly affected by the presence of waves when ship maneuvers in real sea condition. Therefore, it is necessary to understand the maneuvering behavior of a ship in waves in the viewpoint of ship safety in the design stage. In this study, the force and yaw moment acting on a moving ship in regular waves with different wave length and wave direction will be performed in the square wave tank in Changwon National University. The results of this study can be used to help a person to design a ship hull with the best ship maneuverability in waves and disseminate knowledge on predicting ship maneuvering in regular waves in various wave directions.

  • PDF

Simulation of Elastic Wave Propagation in Anisotropic Materials (이방성 재료에서의 탄성파 전파 과정에 대한 시뮬레이션)

  • Kim, Young-H.;Lee, Seung-S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.227-236
    • /
    • 1997
  • Quantitative analysis and imaging of elastic wave propagation are very important for the materials evaluation as well as flaw detection. The elastic wave propagation in an anisotropic media is more complex, and analysis and imaging become essential for flaw detection and materials evaluation. In the anisotropic media, the wave velocity is dependent on the propagation direction. In addition, the direction of group velocity is different from that of phase velocity, the direction of energy flow is not same as the propagation direction of wavefront (beam skewing effect). Especially, this effect becomes critical for the large anisotropic media such as fiber composite materials, and the results using elastic waves for those materials have to be analyzed considering the wave propagation mechanism. Since the analytical approach for the wave propagation in the anisotropic materials is limited, the numerical analysis such as finite difference method (FDM) have been used for these case. Therefore, 2-dimensional FDM program for the elastic wave propagation is developed, and wave propagation in anisotropic media are simulated.

  • PDF

A Study on the Concentration of Wave Energy by Construction of a Submerged Coastal Structure (해저구조물 설치에 따른 파랑에너지 집적에 관한 연구)

  • Gug, S.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.69-91
    • /
    • 1992
  • A new type of horizontal submerged break water or fixed structure to control waves near coastal area is introduced to focus wave energy before or behind it. Intentionally, the water depth near the structure is changed gradually to get a refraction and diffraction effect. The concentration of wave energy due to the structure was analyzed for the selected design of structure. The shape of the submerged structure in consideration is a circular combined with elliptical curve not to cause reflection of waves at the extreme edge of the structure but cause wave scattering. The direction of the structure against the incident wave is changed easily in the model Applying a regular wave train the following were examined. 1) whether a crescent plain submerged structure designed by the wave refraction theory can concentrate wave energy at a focal zone behind and before it without wave breaking phenomenon. 2) Location of maximum wave amplification factor in terms of the incident wave direction, wave period, etc. In any event the study would contribute to control waves near coastal area and to protect a beach from erosion without interruption of ocean view it is an useful study for the concentration of wave energy efficiently with the increase of wave height.

  • PDF

The Determination of Group Velocity of Lamb Wave So Mode in Composite Plates with Anisotropy (이방성 복합재료 판에서 램파 $S_0$ 모드의 군속도 결정)

  • Rhee, Sang-Ho;Lee, Jeong-Ki;Lee, Jung-Ju
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.239-245
    • /
    • 2006
  • Experimentally measured Lamb wave group velocities in composite materials with anisotropic characteristics are not accorded with the theoretical group velocities as calculated with the Lamb wave dispersion equation. This discrepancy arises from the fact that the angle between the group velocity direction and the phase velocity direction in anisotropic materials exists. Wave propagation in a composite material with anisotropic characteristics should be considered with respect to magnitude in addition to direction. In this study, $S_0$ mode phase velocity dispersion corves are depicted with the variation of degree with respect to the fiber direction using a Lamb wave dispersion relation in the unidirectional, bidirectional, and quasi-isotropic composite plates. Slowness surface is sketched by the reciprocal value of the phase velocity curves. The magnitude and direction of the group velocity are calculated from the slowness surface. The theoretically determined group velocity, which is calculated from the slowness surface, Is compared with experimentally measured group velocities. The proposed method shows good agreements with theoretical and experimental results.

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

On the Joint Distribution of Wave Height, Period and Wave Direction in Random Sea Waves (다방향불규칙파랑장에서의 파고, 주기, 파향의 종합확률분포 유도과정 및 적합성)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • A Wave transformation including wave breaking in shallow water region is a non-linear and discontinuous Phenomenon. Therefore, a so-called individual wave analysis (or a wave by wave analysis) rather than spectral approach seems to be adequate to investigate the wave transformation in such regions. In this study, a theoretical joint distribution of wave height, period and wave direction of zero-down crossing waves, which is required in the individual wave analysis in the shallow water region, is derived based on the hypothesis that sea surface is a Gaussian stochastic process and that a band-width of energy spectra is sufficiently narrow. The derived i oint distribution is found to be an effective measure to investigate characteristics of three-dimensional random wave field in shallow water through field measurements.

  • PDF

VELOCITY AND ITS DIRECTION MEASUREMENT OF SCATTERER WITH DIFFERENT VELOCITIES USING SELF-MOXING SEMICONDUCTOR LDV

  • Shinohara, Shigenobu;Haneda, Yoshiyuki;Suzuki, Takashi;Ikeda, Hiroaki;Yoshida, Hirofumi;Sawaki, Toshiko;Mito, Keiichiro;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1966-1970
    • /
    • 1991
  • The self-mixing type semiconductor laser Doppler velocimeter(SM-LDV) is applied to measure two simultaneously moving targets with different velocities in the same direction as a prototype target for multiscatterers. The measured beat waveform is found to be a composite wave of each beat waveform measured fran each of only moving target. In the composite waveform, each one-cycle wave has a feature of the sawtooth wave. This fact shows a possibility to discriminate the flow direction of fluid containing multiscatterers with distributed velocities by cooperating an improved version of the direction discrimination circuit already devised by the authors.

  • PDF

Vibration Analysis for a Gimbal Structure of a Micro Wave Seeker(I) : Experimental Modal Analysis (마이크로 웨이브 탐색기의 김발 구조물 진동해석(I) : 실험모드해석)

  • Lee, Sock-Kyu;Chang, Young-Bae;Lee, Jin-Koo;Kwon, Byung-Hyun;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.508-513
    • /
    • 2000
  • Micro wave seeker detects micro wave signal reflecting from a object and modifies the angle of a antenna in the direction of a reflecting signal. Gimbal structure makes a motion in the direction of an elevation axis and an azimuth axis and change the direction of a missile toward a object. As before, Micro wave seeker is a important part of a missile. Especially, gimbal structure is designed to resist a external force generated by a strong propelling power. For that reason, it is essential to analyze a vibration feature of gimbal structure. In this paper, we analyze dynamic characteristics of a gimbal structure of a micro wave seeker. And we measure frequency response functions of a gimbal structure in order to investigate the effect of a pre-load on bearing.

  • PDF

Characteristics of Seasonal Wave, Wave-Induced Current and Sediment Transport in Haeundae Beach (해운대 해수욕장의 계절별 파랑, 해빈류 및 퇴적물이동 특성)

  • Lee, Jong-Sup;Tac, Dae-Ho;Woo, Jin-Gap
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.574-585
    • /
    • 2007
  • To analyze the incident wave characteristics around Haeundae beach the long-term deep water wave data computed by wave hindcast method were used and a continuous wave observation was carried out for 1 year at the 20 m of water depth in front of Haeundae beach. Wave observation data showd that the prevalent wave direction was SSW-S in spring and summer seasons while E-SE in autumn and winter. A numerical modeling shows that the waves from E-SE are refracted strongly due to the shoal developed at the south-east side of Haeundae beach. The simulation also shows inflowing nearshore current along the east coast of the beach develops strongly in autumn and winter. Radioactive isotope tracer experiment for 155 days indicated that the tracers moves to the on-shore direction in the 1st and 2nd tracking then dispersed to the E-W direction along the shore.