• Title/Summary/Keyword: Wave Breaking

Search Result 369, Processing Time 0.023 seconds

Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field (잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구)

  • 배기성;허동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

Bow Wave Breaking and Viscous Interaction of Stern Wave

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.448-455
    • /
    • 2000
  • The bow wave breaking and the viscous interaction of stern wave are studied by simulating the free-surface flows. The Navier-Stokes equation is solved by a finite difference method in which the body-fitted coordinate system, the wall function and the triple-grid system are invoked. After validation, the calculations are extended to turbulent flows. The wave elevation at the Reynolds number of $10^4$ is much less than that at $10^6$ although the Froude number is the same. The numerical appearance of the sub-breaking waves is qualitatively supported by experimental observation. They are also applied to study the stern flow of S-103 for which extensive experimental data are available. Although the interaction between separation and the stern wave generation are not yet clear, the effects of the bow wave on the development of the boundary layer flows are concluded to be significant.

  • PDF

Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes (다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산)

  • 홍기용;에스똘히오메자
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

A Study on the Determination of Wave Load Acting on Offshore Structures (해저 석유개발을 위한 해양구조물의 기본 설계/해석 및 실험기법 개발 -해양구조물에 작용하는 파랑하중 산정에 관한 연구)

  • 이근무
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.6-10
    • /
    • 2000
  • In this paper various methods of determining of wave loads acting ofshore structures including impact load due to breaking wave are studied and corresponding model test was performed. In the theoretical approach wave load by nonbreaking wave and impact load by breaking wave is determined by Morrison's equation Goda's equation and impact wave equation, In the experimental approach wave load by nonbreaking wave acting on cylindrical pile used in offshore structures is determined by measuring the strain on a cylindrical pile and compared with theoretical calue. in the numerical approach impact load by breaking wave acting on a modeled cylindrical pile is calculated by usign ANSYS FEM program and compared with theoretical value. It is found that the experimental and numerical results are comparable to theoretical results, Thus the determination of wave load acting on offshore structures can be obtained by a proposed methods and it acceptable.

  • PDF

Flow Regimes of Continuously Stratified Flow over a Double Mountain (두 개의 산악 위에서의 연속적으로 성층화된 흐름의 흐름 체계)

  • Han, Ji-Young;Kim, Jae-Jin;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.231-240
    • /
    • 2007
  • The flow regimes of continuously stratified flow over a double mountain and the effects of a double mountain on wave breaking, upstream blocking, and severe downslope windstorms are investigated using a mesoscale numerical model (ARPS). According to the occurrence or non-occurrence of wave breaking and upstream blocking, three different flow regimes are identified over a double mountain. Higher critical Froude numbers are required for wave breaking and upstream blocking initiation for a double mountain than for an isolated mountain. This means that the nonlinearity and blocking effect for a double mountain is larger than that for an isolated mountain. As the separation distance between two mountains decreases, the degree of flow nonlinearity increases, while the blocking effect decreases. A rapid increase of the surface horizontal velocity downwind of each mountain near the critical mountain height for wave breaking initiation indicates that severe downslope windstorms are enhanced by wave breaking. For the flow with wave breaking, the numerically calculated surface drag is much larger than theoretically calculated one because the region with the maximum negative perturbation pressure moves from the top to the downwind slope of each mountain as the internal jump propagating downwind occurs.

Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters (잠제 제원 및 평면배치에 따른 쇄파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo;Huh, Jung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄파력에 관한 연구)

  • 조효제;구자삼;이상길
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.220-226
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Wave Force Acting on Cylinders in Transient Waves (과도 수파중의 복합실린더에 작용하는 쇄과력에 관한 연구)

  • 조효제;구자삼;이상길
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2001
  • It is important to estimate exactly wave forces acting on various types of offshore structures under the severe environmental conditions in the ocean site. This paper presents an easy experimental method which deals with transient waves. The proposed scheme made it possible to generate breaking waves at any position in the wave tank by changing the maximum slope of the component waves. The theoretical and experimental methods were investigated by generating concentrated waves which acted on a single and multiple cylinders. The waves forces increased rapidly when the models encountered breaking waves. The theoretical results underestimates the forces due to breaking waves. Therefore, the effects due to breaking waves should be considered carefully in the design process of a structure under the influence of breaking waves.

  • PDF

Numerical Analysis of the Three-Dimensional Nonlinear Waves Caused by Breaking Waves around a Floating Offshore Structure (부유식 해양구조물 주위의 쇄파현상을 동반한 3차원 비선형성 파의 수치해석)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.62-73
    • /
    • 1996
  • Numerical simulation is made of the three-dimensional wave breaking motion about a part of a floating offshore structure containing a circular cylinder mounted vertically onto a lower hull in regular periodic gravity wave generated by a numerical wave maker. TUMMAC-VIII finite-difference method is newly developed for such a problem. By use of density-function technique the three-dimensional wave breaking motion is approximately implenented in the framework of rectangular grid system. A porosity technique is devised for the implementation of the no-slip bydy boundary conditions. The generation of breaking waves by the interaction of incident waves with the structure is well simulated and interesting features of breaking waves are revealed with containing degree of quantitative and qualitative accuracy.

  • PDF