• 제목/요약/키워드: Wave Action

검색결과 278건 처리시간 0.025초

EGR관 형상이 가변형상 과급기를 장착한 디젤엔진의 EGR 특성에 미치는 영향 (The Effect of EGR Pipe Configuration on EGR Characteristics of Diesel Engine with Variable Geometry Turbocharger)

  • 정수진;정재우;강정호;강우
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.65-73
    • /
    • 2007
  • The use of an Exhaust Gas Recirculation(EGR) for a diesel engine with variable geometry turbocharger(VGT) has confronted how to obtain the amount of EGR for NOx reduction requirement at wide operating range and less side effect. Through a combined effort of modeling(wave action simulation) and experiment, an investigation into the effect of EGR area ratio and pipe length on EGR characteristics of common rail diesel engine with VGT has been performed. For accurate computation, calibration of constants involved in empirical and semi-empirical correlations has been performed at a specific operating point, before of its use for engine simulation. From the results of this study, it was found that EGR rate is sharply increased with increasing EGR area ratio until area ratio of 0.3. However, the effect of EGR area ratio on EGR rate is negligible beyond this criteria. This study also investigates the effect of EGR pipe length on a EGR amount and pulsating flow characteristics at EGR junction. The results showed that the longer EGR pipe length, the lower EGR amount was achieved due to the flow loss resulting in lower amplitude of pressure wave.

경피신경전기자극과 초음파가 전기생리학적 반응에 미치는 영향 (Effects on Electrophysiologic Responses to the Transcutaneous Electrical Nerve Stimulation and Ultra Sound)

  • 백수정;이미애;김진상;최진호
    • The Journal of Korean Physical Therapy
    • /
    • 제12권1호
    • /
    • pp.49-56
    • /
    • 2000
  • The purpose of this study was to investigate the influnce of afferent stimuli, transcutaneous electrical nerve stimulation and ultra sound, on the electrdiagnostic study of normal subjects. Electrodiagnostic study was performed before and after the application of afferent stimulation of the right popliteal fossa on 18 healthy female volunteers. After the transcutaneous electrical nerve stimulation, there is no significantly change of latencies and amplitudes of SEP, H-reflex, peroneal nerve F-wave, and sensory nerve conduction. After the ultra sound, there is no significantly change of latencies and amplitudes of SEP, H-reflex, peroneal nerve F-wave, and sensory nerve conduction. Tibial nope F-wave and motor nerve shows prolonged latency after TENS and US (p<0.01). Ultrasound may have a similar mechanism of action compared to transcutaneous electrical nerve stimulation by having localized inhibitory effects of the peripheral nerve. However, further investigation is needed to assess their mechanism of action and the precise relevance of stimulation modality.

  • PDF

Pontoon and Membrane Breakwater

  • 기성태
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.185-191
    • /
    • 2003
  • A numerical study on the hydrodynamic properties of a floating flexible breakwater consisting of triple vertical porous membrane structures attached to a floating rigid pontoon restrained by moorings is carried out in the context of two-dimensional linear wave-flexible body interaction theory. The tensions in the triple membranes are achieved by hanging a clump weight from its lower ends. The clump weight is also restrained properly by moorings. The dynamic behavior of the breakwater was described through an appropriate Green function, and the fluid multi-domains are incorporated into the boundary integral equation. Numerical results are presented which illustrate the effects of the various wave and structural parameters on the efficiency of the breakwater as a barrier to wave action. It is found that the wave reflection and transmission properties of the structures depends strongly on the membrane length taking major fraction of water column, the magnitude of tensions on membrane achieving by the clump weight, proper mooring types and stiffness, the permeability on the membrane dissipating wave energy.

  • PDF

연안 조간대에 표착된 기름이 입자상 물질의 토양침투에 미치는 영향의 실험적 연구 (Experimental Study on Effect of Stranded Oil on the Penetration of Particulate Matters in Tidal Flat)

  • 정정조;이영식
    • 대한환경공학회지
    • /
    • 제27권10호
    • /
    • pp.1030-1034
    • /
    • 2005
  • 본 연구에서는 파도에너지가 비교적 작은 폐쇄성수역의 사질 조간대를 대상으로 하여 입자상 물질의 토양 침투거동을 파악하고, 유출된 기름의 조간대 사면표착이 입자상 물질의 토양침투 차단 여부를 규명하는 것을 목적으로 하여 모의 조간대 실험장치를 이용하여 실험을 하였다. 폐쇄성 수역과 같은 파도에너지가 작은 조간대에서는 쇄파대에서 붕괴된 파도에 의해서 입자상물질이 orbital 운동을 하면서 반원형태의 침투거동 (semi-circular penetration behavior)을 보였다. 또한 사면의 구배와 쇄파파고의 증가에 따라서 입자상물질의 침투속도도 증가하였다. 조석에 의해서는 토양중 해수의 이동방향과 동일한 방향으로 $45^{\circ}$ 각도를 이루며 토양중으로 침투하였다. 유출된 기름이 토양사면에 표착됨으로 인해 형성된 점착성의 유막은 입자상 물질의 토양침투를 차단하였으며, 이로인해 해수중의 식물성 플랑크톤, 세균, 유기쇄설물과 같은 입자상물질의 침투를 방해하여 조간대에 서식하는 저서생물의 먹이 공급을 감소시켜 연안 생태계에 악영향을 미칠것으로 판단된다.

KCNQ1 S140G 돌연변이 발현과 심실세동과의 상관관계 분석을 위한 컴퓨터 시뮬레이션 연구 (Correlation Analysis of KCNQ1 S140G Mutation Expression and Ventricular Fibrillation: Computer Simulation Study)

  • 정다운;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.123-128
    • /
    • 2017
  • Background and aims: The KCNQ1 S140G mutation involved in $I_{ks}$ channel is a typical gene mutation affecting atrial fibrillation. However, despite the possibility that the S140G gene mutation may affect not only atrial but also ventricular action potential shape and ventricular responses, there is a lack of research on the relationship between this mutation and ventricular fibrillation. Therefore, in this study, we analyzed the correlation and the influence of the KCNQ1 S140G mutant gene on ventricular fibrillation through computer simulation studies. Method: This study simulated a 3-dimensional ventricular model of the wild type(WT) and the S140G mutant conditions. It was performed by dividing into normal sinus rhythm simulation and reentrant wave propagation simulation. For the sinus rhythm, a ventricular model with Purkinje fiber was used. For the reentrant propagation simulation, a ventricular model was used to confirm the occurrence of spiral wave using S1-S2 protocol. Results: The result showed that 41% shortening of action potential duration(APD) was observed due to augmented $I_{ks}$ current in S140G mutation group. The shortened APD contributed to reduce wavelength 39% in sinus rhythm simulation. The shortened wavelength in cardiac tissue allowed re-entrant circuits to form and increased the probability of sustaining ventricular fibrillation, while ventricular electrical propagation with normal wavelength(20.8 cm in wild type) are unlikely to initiate re-entry. Conclusion: In conclusion, KCNQ1 S140G mutation can reduce the threshold of the re-entrant wave substrate in ventricular cells, increasing the spatial vulnerability of tissue and the sensitivity of the fibrillation. That is, S140G mutation can induce ventricular fibrillation easily. It means that S140G mutant can increase the risk of arrhythmias such as cardiac arrest due to heart failure.

부설 수심의 변화에 따른 파랑 중 원통형 부체의 운동 및 계류삭 장력 해석 (Motion of Cylindrical Buoy and Its Mooring Line Tension by Installation Depth under the Action of Waves)

  • 김태호
    • 수산해양기술연구
    • /
    • 제40권4호
    • /
    • pp.360-366
    • /
    • 2004
  • 침하식 가두리 시설의 안정성 평가를 위한 기초 단계로서 일방향 규칙파 중 2점 계류된 원통형 부체를 대상으로 부설 수심의 변화에 따른 부체의 동적 거동 및 계류삭에 작용하는 장력 산정에 관한 수치 계산을 수행하였다. 수치 계산 결과, 수면 상에 설치된 부체를 수면 아래의 약 1/2되는 수층까지 침하 시킨 경우 그것은 동적 거동과 파력은 초기 상태에 비해 각각 최대 50%와 77%까지 감소되어 시설물을 수중으로 침하 시키면 그것의 안정성 유지에 매우 효과적임을 확인할 수 있었다. 또한 부체의 전 후단 변위 및 계류삭에 작용하는 장력의 최대치는 부체의 고유 주기의 영향으로 인해 그것은 길이 d 에 대한 파장 ${\lambda}$의 비 즉, d/${\lambda}$가 약 0.66에서 나타났으며, 이와 같은 현상은 기존 수리 모형실험 결과와 비교적 잘 일치하였다. 그러나 본 수치 계산의 신뢰성 확인을 위해서는 수리 모형실험을 통해 부체의 고유 주기와 작용 파고에 대한 전 후단 변위 등에 대한 충분한 검토가 요구된다.

해양에서 유출된 C중유의 토양 침투 거동 (Penetration Behavior of Spilled Fuel Oil C into Coastal Sandy Beach)

  • 정정조
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제6권3호
    • /
    • pp.37-44
    • /
    • 2003
  • 해상에서 유출된 기름의 조간대 토양 침투에 관한 정보는 유출된 기름의 생태계 피해와 생태계 피해를 최소화하기 위한 처리대책의 수립에 있어서 중요한 단서가 된다. 본 연구에서는 사질지형의 조간대 모형을 이용하여 파도와 조석에 의한 유출된 기름의 토양 침투 거동을 파악하고, 침투에 미치는 주된 영향인자를 규명하는 것을 목적으로 하여 연구를 수행하였다. 해수와 유출된 C중유의 연안 해변 토양 침투는 전혀 다른 거동을 보이는 것을 알 수 있었다. 해수는 파도와 조석의 물리적 작용에 의해서 토양 중으로 침투를 하였으나, 유출된 C중유는 파도에 의해서는 침투되지 않고 조석작용에 의해서만 토양 중으로 침투하는 것을 알 수 있었다. 그리고 평방미터당 1 L의 유출유가 표착하였을 경우 약 80%이상의 유분이 토양 표층 2 cm의 부분에 집중되는 침투경향을 나타내었다. 그리고 유출된 기름의 토양침투에는 온도의 변화에 의존하는 기름의 점도가 강한 영향을 미치는 것을 알 수 있었다.

  • PDF

파랑하중에 의한 해저지반의 공극수압 변화에 대한 연구 (An Experimental Study on the Variation of Pore Water Pressures in the Seabed Subjected to Waves)

  • 장병욱;강준영
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.85-94
    • /
    • 1996
  • For the geotechnical analysis in the construction and Deign of the coastal structures, one of the most important factors is the existence of waves. The dynamic behavior and deformation of the seabed subjected to wave load must be considered. It is expected that the soil behavior in the seabed subjected to cyclic wave load is much different from that on the ground subjected to dynamic forces such as earthquake. The purposes of this study are as follows ; Firstly, to provide a testing method to generate wave loads in the laboratory and measuring oscillatory pore water pressures in the unsaturated marine silty sand specimen, Secondly, to analyze the mechanism of wave induced pore water pressures and liquefaction potentials under the conditions in the testing. It is shown that the test set-up manufactured especially for the test is good to generate oscillatory wave pressures to the specimen with sine wave type. From the results of this study, it is understood that the pore water pressure due to induced waves is not accumulated as the wave number increases but is periodically varied with wave passage on still water surface. The magnitude of pore water pressures measured tends to be diminished radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

연안역에서 고파랑과 폭풍해일을 고려한 침수해석 (Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone)

  • 김도삼;김지민;이광호;이성대
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.