• Title/Summary/Keyword: Watershed management practices

검색결과 125건 처리시간 0.028초

Impacts of Managing Water in a Closed Basin: A Study of the Walker River Basin, Nevada, USA

  • Tracy, John C.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.1-10
    • /
    • 2012
  • Throughout much of the world, many ecological problems have arisen in watersheds where a significant portion of stream flows are diverted to support agriculture production. Within endorheic watersheds (watersheds whose terminus is a terminal lake) these problems are magnified due to the cumulative effect that reduced stream flows have on the condition of the lake at the stream's terminus. Within an endorheic watershed, any diversion of stream flows will cause an imbalance in the terminal lake's water balance, causing the lake to transition to a new equilibrium level that has a smaller volume and surface area. However, the total mass of Total Dissolved Solids within the lake will continue to grow; resulting in a significant increase in the lake's TDS concentration over time. The ecological consequences of increased TDS concentrations can be as limited as the intermittent disruption of productive fisheries, or as drastic as a complete collapse of a lake's ecosystem. A watershed where increasing TDS concentrations have reached critical levels is the Walker Lake watershed, located on the eastern slope of the central Sierra Nevada range in Nevada, USA. The watershed has an area of 10,400 sq. km, with average annual headwater flows and stream flow diversions of 376 million $m^3/yr$ and 370 million $m^3/yr$, respectively. These diversions have resulted in the volume of Walker Lake decreasing from 11.1 billion m3 in 1882 to less than 2.0 billion $m^3$ at the present time. The resulting rise in TDS concentration has been from 2,560 mg/l in 1882 to nearly 15,000 mg/l at the current time. Changes in water management practices over the last century, as well as climate change, have contributed to this problem in varying degrees. These changes include the construction of reservoirs in the 1920s, the pumpage of shallow groundwater for irrigation in the 1960s and the implementation of high efficiency agricultural practices in the 1980s. This paper will examine the impacts that each of these actions, along with changes in the region's climate, has had on stream flow in the Walker River, and ultimately the TDS concentration in Walker Lake.

  • PDF

최적관리기법 위치분배에 의한 유역단위 하천유량과 회피비용 변화에 관한 연구 (Impact of BMP Allocation on Discharge and Avoided Costs in an Urbanized Watershed)

  • 강상준
    • 환경정책연구
    • /
    • 제9권1호
    • /
    • pp.83-107
    • /
    • 2010
  • 본 연구의 목적은 빗물저류 및 흡수 등 우수관리를 위해 설치하는 최적관리기법(Best Management Practices: BMPs)의 효율적인 위치 및 분배 정도를 유역단위에서 살펴보는 것이다. 이를 위해 여러 개의 지류유역과 본류유역으로 이루어진 하나의 대유역을 구축한 후 Hydrological Simulation Program Fortran(HSPF)을 이용하여 도시유역 내다양한 규모와 위치의 BMPs 시나리오를 제작/모의하였다. 이때 대유역 내 전체 BMPs 면적은 일정하도록 하였으며, 유역하구의 첨두유량과 이와 관련된 회피비용을 효율성의 지표로 활용하였다. 모의 결과 BMPs가 상류지류 유역들에 분산 입지했을 때 가장 높은 효율을 보였으며, 본류유역을 포함하여 소유역 한 곳에 집중되었을 때 가장 낮은 효율을 보였다. 하지만 본 연구는 BMPs의 위치 및 분배 변수를 제외한 BMPs 설계 및 유지관리, 유역 내 다양한 토양특성등의 기타변수가 통제된 가상유역을 대상으로 진행되었다는 한계를 안고 있다. 따라서 본 연구는 유역관리에서 BMPs위치 및 분배가 유역관리에 중요한 정책변수일 수 있다는 가능성을 제시하는 데 그치고 있으며, 이러한 가능성은 향후 국내유역에 대한 실증적 모의연구를 통해 논의될 수 있을 것이다.

  • PDF

최적관리기법을 위한 웹기반 NAPRA 의사절정 지원시스템 (Nutrient Enabled National Agricultural Pesticide Risk Analysis (NAPRA) WWW Decision Support System for Agricultural Best Management Practices)

  • 임경재;버나드 엥겔;김기성;최중대
    • 농촌계획
    • /
    • 제9권1호
    • /
    • pp.85-93
    • /
    • 2003
  • National Agricultural Pesticide Risk Analysis (NAPRA) World Wide Web (WWW) 시스템 (http://danpatch.ecn.purdue.edu/${\sim}napra$)은 다양한 영농방법에 따른 농약과 영양물질의 지표수/지하수 유실량을 웹에서 모의하고자 개발되었다. 단일 토양에 대해서 모의할 수 있는 Single Field 버전의 많은 기능이 개선되었고, 행정구역/수계 경계에 대해서 모의할 수 있는 County/Watershed 버전을 확장시켜, Web Geographic Information Systems (GIS) 버전의 NAPRA 시스템을 개발하였다. Web GIS 툴을 이용하면, 모의하고자 하는 지역을 마우스로 디지타이징 한 후, 그 지역에 대해서 영농방법에 따른 영향을 모의할 수 있다. 모의결과를 웹브라우저를 통해서 지도로 보여줄 뿐만 아니라, 그 결과를 데스크탑용 GIS에서 사용할 수 있는 포맷으로 제공한다. 모델을 운영하기 위하여 방대한 양의 입력자료가 필요하고, 일반 사용자가 준비하기 힘든, 데이터들이 있는데, NAPRA WWW 시스템은 이러한 입력자료를 서버측 GIS 데이터 베이스, NAPRA 데이터 베이스, 강우 및 온도 모델 예측치 에서 추출하여 모델을 운영한다. 또한, 모의결과를 방대한 양의 텍스트 파일이 아닌, 차트나, 테이블, 또는 지도형태로 보여주기 때문에, 농부와 같이 전문지식이 없는 사람이 이 시스템을 이용하여 여러 가지 영농 방법 중에서 환경 친화적이면서 경제성을 유지 할 수 있는 최적관리기법을 찾아낼 수 있다.

Analysis of Effects on SWAT Estimation of Warm-Up Period

  • Lee, Ji-Won;Moon, Jong-Pil;Woo, Won-Hee;Kum, Dong-Hyuk;Kim, Ki-Sung;Lim, Kyoung-Jae
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.260-260
    • /
    • 2011
  • SWAT is semi-distributed and continuous-time distributed simulation watershed model, which can simulate point and nonpoint source pollutants as well as hydrology and water quality. It was developed to predict the effects of alternative management decisions on water, sediment, and chemical yields with reasonable accuracy. It is able to predict and manage hydrology, sediments, nutrients, and pesticides with Best Management Practices (BMPs) in a watershed. SWAT model also has potential for use in ungauged basins to predict streamflow and baseflow from saturated source area in watersheds. According to various cultivation practices and climate change, SWAT model is available to analyze relative change in hydrology and water quality. In order to establish optimum management of water quality, both monitering and modeling have been conducted actively using SWAT model. As SWAT model is computer program to simulate a lot of natural phenomena, it has limitation to predict and reflect them with on hundred percent accuracy. Thus, it is possible to analyze the effect of BMPs in the watershed where users want to simulate hydrology and water quality only if model accuracy and applicability are assessed first of all and the result of it is well for the study watershed. For assessment of SWAT applicability, most researchers have used $R^2$ and Nash and Sutcliffe Efficiency (NSE). $R^2$ and NSE are likely to show different results according to a warm up period and sometimes its results are very different. There have been hardly any studies of whether warm up period can affect simulation results in SWAT model. In this study, how warm up period has a effect on SWAT results was analyzed and a appropriate warm up period was suggested. Lots of SWAT results were compared after using measured data of Soyanggang-dam watershed and applying various warm up period (0 ~ 10 year(s)). As a result of this study, when there was no warm up period, $R^2$ and NSE were 0.645, 0.602 respectively, when warm up period was 2 years, $R^2$ and NSE were 0.648, 0.632, and when warm up period was 4 years, $R^2$ and NSE were 0.663, 0.652 separately. Through this study, sensitive analysis of warm up period in SWAT model was conducted, and this study could give a guideline able to simulate hydrology and water quality for more accuracy than before as users change a lot of warm up periods as well as any simulation parameters.

  • PDF

A Review of Stream Assessment Methodologies and Restoration: The Case of Virginia, USA

  • Bender, Shera M.;Ahn, Chang-Woo
    • Environmental Engineering Research
    • /
    • 제16권2호
    • /
    • pp.69-79
    • /
    • 2011
  • Rapid population growth and land use changes have severely degraded streams across the United States. In response, there has been a surge in the number of stream restoration projects, including stream restoration for mitigation purposes. Currently, most projects do not include evaluation and monitoring, which are critical in the success of stream restoration projects. The goal of this study is to review the current status of assessment methodologies and restoration approaches for streams in Virginia, with the aim of assisting the restoration community in making sound decisions. As part of the study, stream restoration projects data from a project in Fairfax County, Virginia was assessed. This review revealed that the stream assessment methodologies currently applied to restoration are visuallybased and do not include biological data collection and/or a method to incorporate watershed information. It was found from the case study that out of the twenty nine restoration projects that had occurred between 1995 and 2003 in Fairfax County, nineteen projects reported bank stabilization as a goal or the only goal, indicating an emphasis on a single physical component rather than on the overall ecological integrity of streams. It also turned out that only seven projects conducted any level of monitoring as part of the restoration, confirming the lack of evaluation and monitoring. However, Fairfax County has recently improved its stream restoration practices by developing and incorporating watershed management plans. This now provides one of the better cases that might be looked upon by stakeholders when planning future stream restoration projects.

Application of AGNPS Water Quality Computer Simulation Model to a Cattle Grazing Pasture

  • Jeon, Woo-Jeong;Parajuli, P.;Yoo, K.-H.
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.83-93
    • /
    • 2003
  • This research compared the observed and model predicted results that include; runoff, sediment yield, and nutrient losses from a 2.71 ha cattle grazing pasture field in North Alabama. Application of water quality computer simulation models can inexpensively and quickly assess the impact of pasture management practices on water quality. AGNPS single storm based model was applied to the three pasture species; Bermudagrass, fescue, and Ryegrass. While comparing model predicted results with observed data, it showed that model can reasonably predict the runoff, sediment yield and nutrient losses from the watershed. Over-prediction and under-prediction by the model occurred during very high and low rainfall events, respectively. The study concluded that AGNPS model can be reasonably applied to assess the impacts of pasture management practices and chicken litter application on water quality.

SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가 (Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch)

  • 허성구;김남원;박윤식;김종건;김성준;안재훈;김기성;임경재
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

도시지역의 비점오염유출특성을 고려한 도시하천 적정관리방안 (Selection of Best Management Practices for Urban Watershed Corresponding to the Runoff Characteristics from Non-point Pollution Sources)

  • 지홍진;신귀암
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.31-40
    • /
    • 2016
  • The purpose of this study was to analyse the runoff characteristics of non-point pollution sources in an urban watershed and determine the effectiveness of newly installed riverwater treatment system to reduce water pollution caused by storm runoff in the urban watershed. The results of this study showed that the levels of BOD5 and suspended solid were highly influenced by first-flush effect and the pollutant load of those two parameters were also very high in the urban watershed. Meanwhile, the effectiveness of riverwater treatment system to reduce the levels of BOD5 and suspended solid was relatively high, but those to reduce the levels of T-N and T-P was low, which needs some additional unit treatment process such as filtration and coagulation. Nonetheless, the riverwater treatment system tested was relatively simple in installation and operation, effective in removing many water pollutants and, most importantly, does not require much space as other treatment systems, so it could be an attractive alternative option to reduce riverwater pollution caused by storm runoff in urban watersheds.

SWAT2000 모형을 이용한 갑천수계의 소유역별 유출량 추정 (Streamflow Estimation for Subbasins of Gap Stream Watershed by Using SWAT2000 Model)

  • 문종필;김태철
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.29-38
    • /
    • 2006
  • Geographic Information System has extended to higher assessment of water resources. GIS linking with hydrological model becomes a trend in water resource assessment modeling. One of the most popular models is SWAT2000 which have effectiveness in multi-purpose processes for predicting the impact of land management practices on water, sediments and chemicals yields in large complex watershed with varying soils, land uses, and management conditions over long period of time. In this study, SWAT2000 model was applied to Gap stream watershed in Daejeon city where TMDL (Total Maximum Daily Load) Regulation would be implanted. The Gap Stream watershed was partitioned into 8 subbasins, however, only 3 out of 8 subbaisns were observed for having practical gauged data on the basis of streamflow from the year of 2002 to 2005. Gauged streamflow data of Indong, Boksu and Hoeduck stations were used for calibration and validation of the SWAT Streamflow simulation. Estimation Efficiency Analysis (COE), Regression Analysis ($R^{2}$), Relative Error (R.E.) were used for comparing observed streamflow data of the 3 subbasins on the daily and monthly basis with estimated streamflow data in order to fix optimized parameters for the best fitted results. COE value for the daily and monthly streamflow was ranged from 0.45 to 0.96. $R^{2}$ values for daily and monthly streamflow ranged from 0.51 to 0.97. R.E. values for total streamflow volume ranged from 3 % to 22.5 %. The accuracy of the model results shows that the SWAT2000 model can be applicable to Korean watersheds like the Gap Stream watershed that needs to be partitioned into a number of subbasins for TMDL regulation.

마둔저수지 농업유역의 관개 회귀수량 추정 (Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir)

  • 김하영;남원호;문영식;방나경;김한중
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.