• Title/Summary/Keyword: Watershed environment

Search Result 1,066, Processing Time 0.021 seconds

Analysis of Food Web Structure of Nakdong River Using Quantitative Food Web Parameters Obtained from Carbon and Nitrogen Stable Isotope Ratios (낙동강 수생태계 먹이망 구조 분석: 안정동위원소 비 기반의 정량적 생태정보를 이용한 영양단계 시공간 분포 경향 파악)

  • Oh, Hye-Ji;Jin, Mei-Yan;Choi, Bohyung;Shin, Kyung-Hoon;La, Geung-Hwan;Kim, Hyun-Woo;Jang, Min-Ho;Lee, Kyung-Lak;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.1
    • /
    • pp.50-64
    • /
    • 2019
  • Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong-Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.

Analyses of Community Structure of Phytoplankton in Reservoirs Located in the Geum River Watershed in South Korea (금강 유역 호소에서 출현하는 식물플랑크톤 군집구조 특성 분석)

  • Choi, Yong Bum;Shin, Yoon Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.280-290
    • /
    • 2021
  • The present study investigated species richness and phytoplankton community structure in lakes in the Geum River Basin during autumn and spring seasons. Surveys were conducted between September and November 2019, and between April and May 2020, which corresponded to the autumn and spring seasons, respectively, to explore the distribution characteristics of the species. A total of 49 species of phytoplankton belonging to 31 genera and seven classes were identified in Cho Pyeong-ji, 51 species belonging to 29 genera and six classes were identified in Song Ak-ji, 49 species belonging to 32 genera and seven classes were identified in Cheong Cheon-ji, 82 species belonging to 45 genera and six classes were identified in Ye Dangji, and 70 species belonging to 40 genera and six classes were identified in Ganwol Lake. A total of 43 species belonging to 74 genera and seven classes were identified. The ranges of phytoplankton standing crop were as follows: 223~3533 cells mL-1 in Cho Pyeong-ji, 881~176018 cells mL-1 in Song Ak-ji, 402~6139 cells mL-1 in Cheong Cheon-ji, 262~10460 cells mL-1 in Ye Dang-ji, and 20413~330695 cells mL-1 in Ganwol Lake. Phytoplankton diversity in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 1.10~2.60, 0.56~2.03, 0.21~2.03, 0.65~2.57, and 0.44~1.12, respectively. Phytoplankton species richness in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 1.91~4.99, 1.82~3.26, 1.26~4.17, 2.07~5.37, and 1.90~2.43, respectively. Phytoplankton evenness indices in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 0.38~0.78, 0.18~0.69, 0.08~0.71, 0.22~0.72, and 0.14~0.38, respectively. Phytoplankton dominance indices in Cho Pyeong-ji, Song Ak-ji, Cheong Cheon-ji, Ye Dang-ji, and Ganwol Lake were 0.40~0.83, 0.55~0.96, 0.44~0.99, 0.42~0.93, and 0.89~0.97, respectively.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.

Influences of Forest Management Practices on pH and Electrical Conductivity in the Throughfall and Stemflow with the Abies holophylla and Pinus koraiensis Dominant Watershed (전나무림, 잣나무림 유역에서 수관통과우와 수간유하수의 수소이온농도 및 전기전도도에 미치는 산림시업의 영향)

  • Jeong, Yong-Ho;Kim, Kyong-Ha;Park, Jae-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.52-61
    • /
    • 2002
  • This research was conducted to evaluate the effect of forest management practices on pH and electrical conductivity to get fundamental information on water purification capacity after forest operation. Rainfall, throughfall and stemflow were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Gwangreung Experimental Forest for S months from May to November 1999. Mean pH of the throughfall of the beginning of the event was higher in management (thinning and pruning) sites of Abies holophylla and Pinus koraiensis stands than nonmanagement site of Abies holophylla and Pinus koraiensis stands. In addition, pH of the throughfall of the total amount of the event showed similar trends which are higher pH in the management sites compared with the non- management sites. This result indicates that managements such as thinning and pruning improve tree butler capacity of rainfall pH. According to the linear regression results, pH of the throughfall of the total amount of the event in non-management sites = 0.735${\times}$pH of the throughfall of the beginning of the event in non-management sites+1.849 ($R^2\;=\;0.82$) and pH of the throughfall of the total amount of the event in management sites= 0.863${\times}$pH of the throughfall of the beginning of the event in management sites +1.0242 ($R^2\;=\;0.87$). In case of stemflow pH, pH of the sternflow of the total amount of the event in non-management sites = 0.53${\times}$pH of the stemflow of the beginning of the event in non- management sites+2.7709 ($R^2\;=\;0.64$) and pH of the stemflow of the total amount of the event in management sites = 0.5854${\times}$pH of the stemflow of the beginning of the event in management sites+2.7045 ($R^2\;=\;0.65$). Electrical conductivity (EC) of the throughfall of the beginning and total amount of the event was highest in non- management site in Abies holophylla, followed by management sites in fsies Abies holophylla, non-management site in Pinus koraiensis, and management sites in Pinus koraiensis stands, respectively. According to the linear regression results, EC of the throughfall of the total amount of the event in non-managementsites = 0.4045${\times}$EC of the throughfall of the beginning of the event in non-management sites+26.766 ($R^2\;=\;0.69$) and EC of the throughfall of the total amount of the event in management sites = 0.6002${\times}$EC of the throughfall of the beginning of the event in management sites+8.0184 ($R^2\;=\;0.54$). In case of stemflow EC, EC of thestemflow of the total amount of the event in non-management sites = 0.6298${\times}$EC of the stemflow of the beginning of the event in non-management sites+11.582 ($R^2\;=\;0.72$) and pH of the stemflow of the total amount of the event in management sites =0.602${\times}$pH of the stemflow of the beginning of the event in management sites+20.783($R^2\;=\;0.49$).

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.