• Title/Summary/Keyword: Watershed Analysis

Search Result 1,466, Processing Time 0.024 seconds

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models (집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가)

  • Woo, Dong Kook;Jo, Jihyeon;Kang, Boosik;Lee, Songhee;Lee, Garim;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.43-54
    • /
    • 2023
  • Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment (소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가)

  • Hur, Seung-Oh;Sonn, Yeon-Kyu;Jung, Kang-Ho;Park, Chan-Won;Lee, Hyun-Hang;Ha, Sang-Keun;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.383-391
    • /
    • 2007
  • This study was conducted for an assessment through the estimation of soil loss by each catchment classified by soil catena. Ten catchments, which are Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01, Gyongancheon02, Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02, Youngsangang08, were selected from the hydrologic unit map and the detailed soil digital map (1:25,000) for this study. The catchments like Geumgang21, Namgang03, Dongjincheon, Gapyongcheon01 and Gyongancheon02 were mainly composed with soils originated from gneiss. The catchments like Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 and Youngsangang08 were mainly composed with soils originated from granites. The grades, which are divided into seven grades with A(very tolerable), B(tolerable), C(moderate), D(low), E(high), F(severe), G(very severe), of soil erosion estimated by USLE in catchments were distributed in most A and B because of paddy land and forestry. In detailed, the soil erosion grade of catchments mainly distributing soils originated from gneiss showed more the distribution of B and C than it of catchments mainly distributing soils originated from granites. The reason of results would be derived from topographic characteristics of soils originated from gneiss located at mountainous. The soil loss according to soil catena linked with Songsan and Jigok series, which are soils originated from gneiss was calculated with $7.66ton\;ha^{-1}\;yr^{-1}$. The soil loss of Geumgang16, Byongsungcheon01, Daesincheon, Bukcheon02 which have the soil catena linked with Samgak and Sangju soil series originated from granite, was calculated with $5.55ton\;ha^{-1}\;yr^{-1}$. The soil loss of Youngsangang08 which have the soil catena linked with Songjung and Baeksan soil series originated from granite was calculated with $9.6ton\;ha^{-1}\;yr^{-1}$, but the conclusion on soil loss in this kind of soil catena would be drawn from the analysis of more catchments. In conclusion, the results of this study inform that the classification of soil catena by catchments and estimation of soil loss according to soil catena would be effective for analysis on the grade of non-point pollution by soil erosion in a catchment.

A Study on the Characteristics of Stream Flow Path and Water System Distribution in Gugok Garden, Korea (한국 구곡원림(九曲園林)의 하천 유로 및 수계별 분포 특성)

  • Rho, Jae-Hyun;Choi, Young-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.50-65
    • /
    • 2021
  • In this study, the water flow system by measuring the flow-way type and distance of flow path that composes the Gugok through literature survey, field survey, and map work on Gugok gardens in Korea whose existence has been confirmed, while investigating and analyzing watersheds, river orders, and river grades. It was intended to reveal the watershed distribution and stream morphological characteristics of the Gugok gardens and to use them as basic data for future enjoyment and conservation of the Gugok gardens. The conclusion of the study is as follows. First, Of the 93 Gugok gardens that have been confirmed to exist, it was found that 11 places(11.8%) were found to have a descending(top-down) type of Gugok that develops while descending along a stream. Second, As a result of analysis of the length of the flow path for each valley, Okryudonggugok(玉流洞九曲, Namsan-gugok) in Gimcheon, Gyeongsangbuk-do was found to have the shortest length of 0.44km among the surveyed valleys, while the flow distance of Muheulgugok(武屹九曲) located in Seongju-gun and Gimcheon-si, Gyeongsangbuk-do was 31.1km, showing the longest flowing distance. The average flow path length of the Gugok Garden in Korea was 6.24km, and the standard deviation was 4.63km, indicating that the deviation between the 'curved type'e and the 'valley type' was severe. In addition, 14(15.1%) Gugok gardens were found to be partially submerged due to dam construction. Third, As a result of analyzing the waters area where Gugok garden is located, the number of Nakdong river basins was much higher at 52 sites(55.9%), followed by the Hangang river basin at 27 sites(28.7%), the Geum river basin at 9 sites(9.7%), and the Yeongsan river and Seomjin river basins at 5(5.4%). Fourth, All Gugok gardens located in the Han river region were classified as the Han river system, and the Gugok garden located on the Nakdong river was classified as the main Nakdong river system, except for 7 places including 5 places in the Nakdong Gangnam Sea water system and 2 places in the Nakdong Gangdong sea water system. As a result of synthesizing the river order of the flow path where Gugok garden is located, Gugok, which uses the main stream as the base of Gugok, is 3 places in the Hangang water system, 5 places in the Nakdong river system, 2 places in the Geumgang water system, and 1 place in the Yeongsangam/Seomjin river system. A total of 11 locations(11.5%) were found, including 36 locations(38.2%) in the first branch, 29 locations(31.2%) in the second branch, and 16 locations(17.0%) in the third branch. And Gugok garden, located on the 4th tributary, was found to be Taehwa Five-gok(太華五曲) set in Yonghwacheon Stream in Cheorwon in the Han river system, and Hoenggyegok(橫溪九曲) in Yeongcheon Hoenggye Stream in the Nakdong river system. Fifth, As a result of the river grade analysis of the rivers located in the Gugok garden Forest, the grades of the rivers located in the Gugok garden were 13 national rivers(14.0%), 7 local first-class rivers(7.5%), and 74 local second-class rivers(78.5%) was shown.

Analysis of Forestry Structure and Induced Output Based on Input - output Table - Influences of Forestry Production on Korean Economy - (산업관련표(産業關聯表)에 의(依)한 임업구조분석(林業構造分析)과 유발생산액(誘發生産額) -임업(林業)이 한국경제(韓國經濟)에 미치는 영향(影響)-)

  • Lee, Sung-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.4-14
    • /
    • 1974
  • The total forest land area in Korea accounts for some 67 percent of the nation's land total. Its productivity, however, is very low. Consequently, forest production accounts for only about 2 percent of the gross national product and a minor proportion of no more than about 5 percent versus primary industry. In this case, however, only the direct income from forestry is taken into account, making no reference to the forestry output induced by other industrial sectors. The value added Or the induced forestry output in manufacturing the primary wood products into higher quality products, makes a larger contribution to the economy than direct contribution. So, this author has tried to analyze the structure of forestry and compute the repercussion effect and the induced output of primary forest products when utilized by other industries for their raw materials, Hsing the input-output table and attached tables for 1963 and 1966 issued by the Bank of Korea. 1. Analysis of forestry structure A. Changes in total output Durng the nine-year period, 1961-1969, the real gross national product in Korea increased 2.1 times, while that of primary industries went up about 1. 4 times. Forestry which was valued at 9,380 million won in 1961, was picked up about 2. 1 times to 20, 120 million won in 1969. The rate of the forestry income in the GNP, accordingly, was no more than 1.5 percent both in 1961 and 1962, whereas its rate in primary industries increased 3.5 to 5.4 percent. Such increase in forestry income is attributable to increased forest production and rise in timber prices. The rate of forestry income, nonetheless, was on the decrease on a gradual basis. B. Changes in input coefficient The input coefficient which indicates the inputs of the forest products into other sectors were up in general in 1966 over 1963. It is noted that the input coefficient indicating the amount of forest products supplied to such industries closely related with forestry as lumber and plywood, and wood products and furniture, showed a downward trend for the period 1963-1966. On the other hand, the forest input into other sectors was generally on the increase. Meanwhile, the input coefficient representing the yolume of the forest products supplied to the forestry sector itself showed an upward tendency, which meant more and more decrease in input from other sectors. Generally speaking, in direct proportion to the higher input coefficient in any industrial sector, the reinput coefficient which denotes the use of its products by the same sector becomes higher and higher. C. Changes in ratio of intermediate input The intermediate input ratio showing the dependency on raw materials went up to 15.43 percent m 1966 from 11. 37 percent in 1963. The dependency of forestry on raw materials was no more than 15.43 percent, accounting for a high 83.57 percent of value added. If the intermediate input ratio increases in any given sector, the input coefficient which represents the fe-use of its products by the same sector becomes large. D. Changes in the ratio of intermediate demand The ratio of the intermediate demand represents the characteristics of the intermediary production in each industry, the intermediate demand ratio in forestry which accunted for 69.7 percent in 1963 went up to 75.2 percent in 1966. In other words, forestry is a remarkable industry in that there is characteristics of the intermediary production. E. Changes in import coefficient The import coefficient which denotes the relation between the production activities and imports, recorded at 4.4 percent in 1963, decreased to 2.4 percent in 1966. The ratio of import to total output is not so high. F. Changes in market composition of imported goods One of the major imported goods in the forestry sector is lumber. The import value increased by 60 percent to 667 million won in 1966 from 407 million won in 1963. The sales of imported forest products to two major outlets-lumber and plywood, and wood products and furniture-increased to 343 million won and 31 million won in 1966 from 240million won and 30 million won in 1963 respectively. On the other hand, imported goods valued at 66 million won were sold to the paper products sector in 1963; however, no supply to this sector was recorded in 1963. Besides these major markets, primary industries such as the fishery, coal and agriculture sectors purchase materials from forestry. 2. Analysis of repercussion effect on production The repercussion effect of final demand in any given sector upon the expansion of the production of other sectors was analyzed, using the inverse matrix coefficient tables attached to the the I.O. Table. A. Changes in intra-sector transaction value of inverse matrix coefficient. The intra-sector transaction value of an inverse matrix coefficient represents the extent of an induced increase in the production of self-support products of the same sector, when it is generated directly and indirectly by one unit of final demand in any given sector. The intra-sector transaction value of the forestry sector rose from 1.04 in 1963 to 1, 11 in 1966. It may well be said, therefore, that forestry induces much more self-supporting products in the production of one unit of final demand for forest products. B. Changes in column total of inverse matrix coefficient It should be noted that the column total indicates the degree of effect of the output of the corresponding and related sectors generated by one unit of final demand in each sector. No changes in the column total of the forestry sector were recorded between the 1963 and 1966 figures, both being the same 1. 19. C. Changes in difference between column total and intra-sector transaction amount. The difference between the column total and intra-sector transaction amount by sector reveals the extent of effect of output of related industrial sector induced indirectly by one unit of final demand in corresponding sector. This change in forestry dropped remarkable to 0.08 in 1966 from 0.15 in 1963. Accordingly, the effect of inducement of indirect output of other forestry-related sectors has decreased; this is a really natural phenomenon, as compared with an increasing input coefficient generated by the re-use of forest products by the forestry sector. 3. Induced output of forestry A. Forest products, wood in particular, are supplied to other industries as their raw materials, increasng their value added. In this connection the primary dependency rate on forestry for 1963 and 1966 was compared, i. e., an increase or decrease in each sector, from 7.71 percent in 1963 to 11.91 percent in 1966 in agriculture, 10.32 to 6.11 in fishery, 16.24 to 19.90 in mining, 0.76 to 0.70 in the manufacturing sector and 2.79 to 4.77 percent in the construction sector. Generally speaking, on the average the dependency on forestry during the period 1963-1966 increased from 5.92 percent to 8.03 percent. Accordingly, it may easily be known that the primary forestry output induced by primary and secondary industries increased from 16, 109 million won in 1963 to 48, 842 million won in 1966. B. The forest products are supplied to other industries as their raw materials. The products are processed further into higher quality products. thus indirectly increasing the value of the forest products. The ratio of the increased value added or the secondary dependency on forestry for 1963 and 1966 showed an increase or decrease, from 5.98 percent to 7.87 percent in agriculture, 9.06 to 5.74 in fishery, 13.56 to 15.81 in mining, 0.68 to 0.61 in the manufacturing sector and 2.71 to 4.54 in the construction sector. The average ratio in this connection increased from 4.69 percent to 5.60 percent. In the meantime, the secondary forestry output induced by primary and secondary industries rose from 12,779 million Wall in 1963 to 34,084 million won in 1966. C. The dependency of tertiary industries on forestry showed very minor ratios of 0.46 percent and 0.04 percent in 1963 and 1966 respectively. The forestry output induced by tertiary industry also decreased from 685 million won to 123 million won during the same period. D. Generally speaking, the ratio of dependency on forestry increased from 17.68 percent in 1963 to 24.28 percent in 1966 in primary industries, from 4.69 percent to 5.70 percent in secondary industries, while, as mentioned above, the ratio in the case of tertiary industry decreased from 0.46 to 0.04 percent during the period 1963-66. The mining industry reveals the heaviest rate of dependency on forestry with 29.80 percent in 1963 and 35.71 percent in 1966. As it result, the direct forestry income, valued at 8,172 million won in 1963, shot up to 22,724 million won in 1966. Its composition ratio lo the national income rose from 1.9 percent in 1963 to 2.3 per cent in 1966. If the induced outcome is taken into account, the total forestry production which was estimated at 37,744 million won in 1963 picked up to 105,773 million won in 1966, about 4.5 times its direct income. It is further noted that the ratio of the gross forestry product to the gross national product. rose significantly from 8.8 percent in 1963 to 10.7 percent in 1966. E. In computing the above mentioned ratio not taken into consideration were such intangible, indirect effects as the drought and flood prevention, check of soil run-off, watershed and land conservation, improvement of the people's recreational and emotional living, and maintenance and increase in the national health and sanitation. F. In conclusion, I would like to emphasize that the forestry sector exercices an important effect upon the national economy and that the effect of induced forestry output is greater than its direct income.

  • PDF