• Title/Summary/Keyword: Waterline

Search Result 76, Processing Time 0.023 seconds

Extraction of Waterline Using Low Altitude Remote Sensing (저고도 원격탐사 영상 분석을 통한 수륙경계선 추출)

  • Jung, Dawoon;Lee, Jong-Seok;Baek, Ji-Yeon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.337-349
    • /
    • 2020
  • In this study, Helikite, Low Altitude Remote Sensing (LARS) platform, was used to acquire coastal images. In the obtained image, the land and water masses were divided using four types of region clustering algorithms, and then waterline was extracted using edge detection. Quantitative comparisons were not possible due to the lack of in-situ waterline data. But, based on the image of the infrared band where water masses and land are relatively clear, the waterlines extracted by each algorithm were compared. As a result, it was found that each algorithm differed significantly in the part where the distinction between water masses and land was ambiguous. This is considered to be a difference in the process of selecting the threshold value of the digital number that each algorithm uses to distinguish the regions. The extraction of waterlines through various algorithms is expected to be used in conjunction with a Low Altitude Remote Sensing system that can be continuously monitored in the future to explain the rapid changes in coastal shape through several years of long-term data from fixed areas.

Error Analysis of Waterline-based DEM in Tidal Flats and Probabilistic Flood Vulnerability Assessment using Geostatistical Simulation (지구통계학적 시뮬레이션을 이용한 수륙경계선 기반 간석지 DEM의 오차 분석 및 확률론적 침수 취약성 추정)

  • KIM, Yeseul;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.85-99
    • /
    • 2013
  • The objective of this paper is to analyze the spatial distribution of errors in the DEM generated using waterlines from multi-temporal remote sensing data and to assess flood vulnerability. Unlike conventional research in which only global statistics of errors have been generated, this paper tries to quantitatively analyze the spatial distribution of errors from a probabilistic viewpoint using geostatistical simulation. The initial DEM in Baramarae tidal flats was generated by corrected tidal level values and waterlines extracted from multi-temporal Landsat data in 2010s. When compared with the ground measurement height data, overall the waterline-based DEM underestimated the actual heights and local variations of the errors were observed. By applying sequential Gaussian simulation based on spatial autocorrelation of DEM errors, multiple alternative error distributions were generated. After correcting errors in the initial DEM with simulated error distributions, probabilities for flood vulnerability were estimated under the sea level rise scenarios of IPCC SERS. The error analysis methodology based on geostatistical simulation could model both uncertainties of the error assessment and error propagation problems in a probabilistic framework. Therefore, it is expected that the error analysis methodology applied in this paper will be effectively used for the probabilistic assessment of errors included in various thematic maps as well as the error assessment of waterline-based DEMs in tidal flats.

Bottom Topography Observation in the Intertidal Zone Using a Camera Monitoring System (카메라 관측 시스템을 이용한 조간대 3차원 지형 관측)

  • Kim Tae-Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2006
  • Time series of waterline changes during a flood/ebb cycle can be utilized for supplementary data for measuring bottom topography. The waterlines extracted from consecutive images are substituted for depth contours using water level data. The distances between contours are quantified through a rectification image process. This technique is applied to the Keunpoolan beach in the Daeijak Island near Incheon. A camera monitoring technique supported by natural water level changes produces bottom topography with high precision. It is also less time consuming and more economical. The technique also can be utilized effectively to the physical modeling f3r measuring bottom changes in the three dimensional basin.

A Study on the Rice growing water-management System based on IoT (IoT 기반 벼농사 생장 물 관리 시스템 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.989-994
    • /
    • 2016
  • This study was conducted the management of a water level through the water sensor, the waterline and the drain applied to the rice paddy. The gateway transfers the information to oneM2M(: Machine to Machine) platform of IoT(: Internet of Thing) standards to the height of the water level sensor information through the LoRa connection. Depending on the water level requested by the IoT platform, the gateway is to On or Off waterline or drain motor switch and send the information of the water level sensor. IoT platform performs the intelligent application function according to the condition of the water level.

Investigation of Intertidal Zone using TerraSAR-X: A Preliminary Result (TerraSAR-X를 이용한 조간대 관측: 초기결과)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.46-52
    • /
    • 2009
  • TerraSAR-X 자료를 이용하여 고해상 X-밴드 SAR 시스템을 이용한 조간대 적용 가능성을 시험하였다 연구대상지역은 강화도 남단과 영종도를 잇는 조간대이며, 단일편파자료와 이중편파자료를 이용하였다. 연구내용은 다음과 같은 세 가지로 분류된다. 첫째, X-밴드 영상에서의 연안의 레이더 반사도 특성 연구 및 waterline 추출 정밀도를 평가하였다. 연안지역의 wateline은 HH 편광자료의 레이더 반사도 특성을 통하여 추출하였을 때 가장 신뢰도가 높았으며, TerraSAR-X 시스템의 짧은 파장과 높은 제도정밀도로 인하여 정밀한 지리좌표로의 변환이 가능하였다 연구지역의 조간대 지형 경사도는 평균적으로 수평방향으로 60m당 20cm의 고도변화를 가지므로, TerraSAR-X HH 편광자료를 이용한 waterline 추출은 정밀한 조간대 DEM 추출로 응용될 수 있다. 둘째, 이중편파자료의 편파특성을 이용한 조간대 염생식물의 산란특성 관측하였다. 조간대에서 수륙의 경계부에서 잘 관측되는 칠면초와 같은 염생식물은 해수면변화에 따른 조간대의 육지화를 모니터링 하는데 좋은 표적이 된다. TerraSAR-X 이중편파자료의 산란특성을 이용한 염생식물 관측결과는 2007년에 현장에서 취득된 실측자료와 비교하여 3dB 이내의 정밀도로 일치하였다 셋째, 단일편파 자료의 레이더 간섭기법을 이용한 조간대 DEM 작성 시도하였다. 조간대 내에서 육지화가 진행된 지역은 표면에 염생식물이 발달하였음에도 불구하고 높은 간섭긴밀도를 나타내었다. 레이더 간섭기법을 통한 DEM의 제작은 일반적인 조간대에서는 적용이 제한적이며, TanDEN-X의 적용이 필요하다.

  • PDF

3-Dimensional Free Form Design Using an ASMOD (ASMOD를 이용한 3차원 자유 형상 설계)

  • 김현철;김수영;이창호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 1998
  • This paper presents the process generating the 3-dimensional free f o r m hull form by using an ASMOD(Adaptive Spline Modeling of Observation Data) and a hybrid curve approximation. For example, we apply an ASMOD to the generation of a SAC(Sectiona1 Area Curve) in an initial hull form design. That is, we define SACS of real ships as B-spline curves by a hybrid curve approximation (which is the combination method of a B-spline fitting method and a genetic algorithm) and accumulate a database of control points. Then we let ASMOD learn from the correlation of principal dimensions with control points and make the ASMOD model for SAC generation. Identically, we apply an ASMOD to the generation of other hull form characteristic curves - design waterline curve, bottom tangent line, center profile line. Conclus~onally we can generate a design hull form from these hull form characteristic curves.

  • PDF

Development of Remote Field Eddy Current Pipeline Inspection System (원격장 와전류 배관 탐상 시스템 개발)

  • Jeong, Jin-Oh;Yi, Jae-Kyung;Kim, Hyoung-Jean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.556-560
    • /
    • 2001
  • Remote field eddy current testing (RFECT) with through-wall transmission characteristic is being applied to pipes ranging from small tubes of heat exchanger to natural gas supply pipelines. Cast iron pipes with nominal diameter of 100mm are used primarily as the waterline pipes. The leakage of water occurs due to defects in the pipes caused by vibration of automobiles and corrosion. But, the use of direct inspection methods such as insertion of inspection equipment inside the pipelines has been limited due to its lack of economical efficiency. Economical development of inspection equipments is possible since RFECT method can be easily employed for system integration and quantitative evaluation of both inside and outside defects. In this study, the development of underground pipeline inspection system was tarried out by using RFECT method in consideration of the characteristics of waterline network. This paper specifically describes the design and production of RFECT pipeline inspection pig using centralizer mechanism, development of remote field eddy current signal acquisition and processing software, and review of RFECT system operation procedures.

  • PDF

Study on the Resistance Improvement for an Extremely Full Ship Under CSR (CSR적용 극비대선의 저항성능 개선에 관한 연구)

  • Park, Hyun-Suk;Kim, Tae-Hoon;Oh, Se-Hyung;Kim, Byoung-Nam;Kim, Wu-Joan;Yoo, Jae-Hoon;Cho, Seong-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • The appearance of CSR changes the concept of the hull form design as well as structural design, since the application of CSR inevitably brings the lightweight increase of a ship. Keeping the original design constraints such as principal particulars, deadweight, and speed performance, designers have to increase the volume of the hull form. As a result, the entrance angle at bow end should become larger, which results in blunter waterline shape. For a slow and full ship having high $C_B$ more than 0.85, a new concept of bow shape has been required to alleviate the increase of wave-making resistance, since it is very difficult to improve waterline and frameline shape for such a full ship. In this paper a new bow shape of Capesize Bulk Carrier was developed to improve its wave-making characteristics without incompliance with the design constraints. For loading manual calculation, NAPA software was used. FLUENT6.3.26 and WAVIS1.4 were used to evaluate resistance performance of the subject hull forms. The newly designed hull form was tested at SSPA model basin for the final confirmation of resistance and propulsion performance of the ship. It was found that the new bow shape of a Capesize Bulk Carrier improved the resistance characteristics greatly compared to a conventional bulbous bow. The other benefits of new bow shape on the manufacturability were also investigated.

Time domain simulation for icebreaking and turning capability of bow-first icebreaking models in level ice

  • Ko, Donghyeong;Park, Kyung-Duk;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • Recent icebreaking ships need to be designed to enhance not only icebreaking capability but also turning ability. For the evaluation of ice resistance induced by an icebreaking hull form, HHI (Hyundai Heavy Industries) has developed the hybrid empirical formulas (Park et al., 2015) by considering the geometrical hull shape features, such as waterline and underwater sections. However, the empirical formulas have inherent limits to the precise estimation of the icebreaking and turning ability because the breaking process and the resulting pattern are ignored. For this reason, numerical calculation in time domain is performed to predict the icebreaking process and pattern. In the simulation, varying crushing stress according to velocity vectors and contact areas between hull and ice is newly introduced. Moreover, the simulation results were verified by comparing them with the model test results for three different bow-first icebreaking models.

Evaluation of ALOS PALSAR Interferometry in the West Coast of Korea;Preliminary Results

  • Choi, Jung-Hyun;Lee, Chang-Wook;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.25-28
    • /
    • 2007
  • Precise digital elevation model (DEM) is an important issue in coastal area where DEMs in a time series are especially required. Although LIDAR system is useful in coastal regions, it is not yet popular in Korea mainly because of its high surveying cost and national security reasons. Recently, precise coastal DEM have been made using radar interferometry, waterline method. One of these methods, Spaceborne imaging radar interferometry has been widely used to measure the topography and deformation of the Earth. We acquired ALOS PALSAR FBD mode (Fine Beam Dual) data for evaluating the quality of interferograms and their coherency. The purpose of this study is construction of DEM using the ALOS PALSAR data using radar interferometry and analysis of surface characteristics by coherence and magnitude map over the Ganghwado and Siwha tidal flats and near coastal lands.

  • PDF