• Title/Summary/Keyword: Water-soluble Chitosan

Search Result 115, Processing Time 0.025 seconds

Effects of Chitosan and Organic Acid Salts on the Shelf-life and Pectin Fraction of Kimchi during Fermentation (키토산과 유기산염 첨가가 배추김치의 저장성과 펙틴분획에 미치는 영향)

  • 이지선;이혜준
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.319-327
    • /
    • 2000
  • This study was conducted to prolong the edible period of Kimchi by adding chitosan (0.25, 0.5%) and sodium salts of various organic acids(0.01~0.04M citrate, malate, lactate) . The edible period was estimated by measuring changes in pH. titratable acidity(TA), PH/TA ratio, ascorbic acid content and pectin fraction during Kimchi fermentation at 2$0^{\circ}C$. The results were compared by estimating the maturity of Kimchi fermentation. Kimchi with the chitosan showed higher pH and titratable acidity throughout the fermentation period than that without chitosan. The pH decreased during the fermentation in the order of control, 0.25% chitosan, 0.5% chitosan, 0.5% chitosan+Na-citrate, 0.5% chitosan+Na-malate and 0.5% chitosan+Na-lactate. But the titratable acidity increased in the order of control, 0.5% chitosan+Na-malate, 0.25% chitosan. 0.5% chitosan+Na-citrate, 0.5% chitosan and 0.5% chitosan+Na-lactate. The PH/TA ratio decreased in the order of control, 0.25% chitosan, 0.5% chitosan+Na-malate, 0.5% chitosan, 0.5% chitosan+Na-citrate and 0.5% chitosan+Na-lactate. Ascorbic acid content in Kimchi was the highest at the 3rd day and then decreased during fermentation. Ascorbic acid content in Kimchi containing 0.5% chitosan and organic acid salts was higher than others. Alcohol insoluble solids( AIS ) in Kimchi decreased during fermentation in the order of control, 0.25% chitosan, 0.5% chitosan, 0.5% chitosan+Na-palate. 7.5% chitosan+Na-lactate and 0.5% chitosan+Na-citrate. During fermentation, hot water soluble pectin (HWSP) of control increased, whereas HCI soluble pectin (HCISP) decreased. By addition of chitosan, however, the results became reverse. Chitosan addition appeared to be effective in improving preservation quality of Kimchi during fermention. The edible period become extended by using chitosan plus organic acids instead of using chitosan only. Overall. addition of 0.5% chitosan+Na-lactate seemed most effective in prolonging the edible periods during Kimchi fermentation.

  • PDF

Effects of Preheating Treatment and Chitosan Addition on the Textural Properties of Korean Radish during Salting (무의 염장과정 중 조직감의 변화에 대한 예열처리 및 Chitosan 첨가효과)

  • Rhee, Hee-Seoup;Lee, Gui-Ju
    • Journal of the Korean Society of Food Culture
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 1994
  • This study was attempted to investigate the effects of preheating treatment and chitosan addition on the textural properties of Korean radish during salting. For this study, we determined the changes in textural properties by compression, puncture, cutting tests respectively and the changes in pectin fractions were also determined. Sensory parameters such as hardness, crispness and toughness were evaluated by sensory analysis and their results were correlated with those by Instron. The results were as follows. The compression force of nonpreheated Korean radish was increased by chitosan addition, whereas that of preheated one was decreased during salting. The puncture force from all the samples of Korean radish decreased, however, chitosan addition showed higher puncture force. The cutting force of nonpreheated Korean radish increased during salting and those from nonpreheated and preheated ones were increased by chitosan addition. During salting hot water soluble pectin(HWSP) of nonpreheated Korean radish increased and 0.4% Na-hexametaphosphate soluble pectin(HXSP) and 0.05 N-HCl soluble pectin(HCISP) decreased respectively. However, HXSP was decreased by preheating treatment. On the contrary, the results were reversed by chitosan addition. Hardness and crispness of nonpreheated Korean radish decreased and toughness increased respectively during salting. However, toughness was decreased by preheating treatment and hardness was increased by chitosan addition. Compression and puncture forces were highly correlated with sensory parameters such as hardness and crispness, whereas cutting force was more correlated with toughness. From these results, it seems that the textural properties were improved by chitosan addition in both nonpreheated and preheated Korean radish. The preheating treatment was effective in the early stage of salting. However, combination of both treatments showed little effect during salting.

  • PDF

Effects of the Molecular Weight and Type of Chitosans on Shelf-life of Makkulli (막걸리의 저장성에 미치는 분자량별 및 형태별 키토산의 영향)

  • Shin, A-Ga;Jung, Yoo-Kyung;Lee, Ye-Kyung;Kang, Meung-Soo;No, Hong-Kyoon;Kim, Soon-Dong
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.282-291
    • /
    • 2006
  • Effects of the molecular weight and type of chitosans on shelf-life of Makkulli were evaluated during 18 days of storage at $25^{\circ}C$. Two types of chitosans were studied: ${\alpha}$-chitosans with 11 different molecular weights (water-soluble, Mw = 1, 8, 22, 43, 67 and 616 kDa; acid-soluble, Mw = 282, 440, 746, 1,110 and 2,025 kDa) and ${\beta}$-chitosan (acid-soluble, Mw = 577 kDa). Acid-soluble chitosans were applied as a form of chitosan-ascorbate. All chitosans were added to Makkulli at 0.002% concentration, the optimum concentration established in a preliminary test. Among 12 chitosans, the ${\alpha}$-chitosans with 22 and 440 kDa exhibited stronger antimicrobial effects than did other ${\alpha}$- and ${\beta}$-chitosans. The results for pH, acidity, alcohol concentration, viable cell counts, and sensory evaluation suggested that addition of ${\alpha}$-chitosans with 22 and 440 kDa increased the shelf-life of Makkulli by almost 1 week at $25^{\circ}C$ compared with that of control (without chitosan) and other chitosan-added groups. Extension of Makkulli shelf-life by 1 week is fairly significant in view of the magnitude of the total amount of Makkulli produced in Korea.

  • PDF

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

Solubility, Antioxidative and Antimicrobial Activity of Chitosan-Ascorbate (키토산-아스코베이트의 용해성, 항산화성 및 항균성)

  • Lee, Seung-Bae;Lee, Ye-Kyung;Kim, Soon-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.973-978
    • /
    • 2006
  • This study was conducted to investigate the solubility, antioxidative and antimicrobial activity of the freeze dried chitosan-ascorbate (CAs) and chitosan-acetate (CAc). In the results of solubility, CAs was soluble over 0.5% in distilled water, vinegar, green tea, soju (distilled liquor), beer and red wine, while it was not soluble in soy sauce, soy milk, milk, orange juice, coffee, sesame oil, soy milk and soybean oil. The solubility of CAc in the liquid foods was similar to those of CAs, but it was soluble less than 0.1% in beer, and formed curd in red wine. Electron donating activity, antioxidative activity and SOD activity of CAs were 48.2, 90.6 and 67.5%, respectively, while the activities of the CAc were 0, 40.0 and 10.0%, respectively. The minimal inhibitory concentrations of CAs and CAc were $200\;{\mu}g/disc$ against Bacillus circulans, Bacillus brevis, Bacillus licheniformis, Bacillus arabitane and Bacillus sterothermophillus, $400\;{\mu}g/disc$ against Escherichia coli O157, Listeria monocytogenous, Bacillus cereus and Bacillus subtilis. There was no significant difference in Hunter's L* value between CAs and CAc $(81.95{\sim}82.97)$, but Hunter's a* and b* values of the CAs was higher than those of CAc. While sour and bitter tastes of CAs were lower than those of CAc, there was no significant difference in astringent taste. From these results, it suggested that CAs has more extensive utility in liquid foods with antimicrobial and antioxidant activity as well as sensory quality compared to CAc.

A Study on the Handle of Cotton Fabric treated with Chitosan Polyurethane Mixed Solution by KES (I) (키토산-폴리우레탄 혼합용액(混合溶液)으로 처리(處理)된 면직물(綿織物)의 KES에 의한 태분석(態分析) (I))

  • Yoon, Se-Hee;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.8 no.1
    • /
    • pp.141-155
    • /
    • 2004
  • Chitosan, the natural biodegradable polymer derived from chitin by de- acetylation, has been widely applied to the textile finishing processes for excellent anti-microbial characteristic and handle improvement of fabric. The purpose of this study is to investigate the change of handle when cotton fabric is treated with chitosan-polyurethane mixed solution. The viscosity values of chitosan solutions were 8cps and 50cps, and the wet-pick-up% was maintained at 90%. In case of mixing with water soluble polyurethane, the mixture ratio of chitosan and polyurethane was settled on the solid content ratio of 1:0, 1:0.5, 1:1, 1:2. Also the change of physical properties by neutralization in NaOH solution was studied. The results can be summarized up as follows : 1. Extensibility(EM) and tensile energy(WT) of cotton fabric treated with chitosan are decreased, but bending rigidity(B) is remarkably increased. With the addition of polyurethane, the decrease of EM and WT is weakened and the increase of B is weakened. The case of neutralization is similar to the case of polyurethane addition. 2. By treating fabric with chitosan, FUKURAMI(Fullness and softness) is decreased, but KOSHI(Stiffness), SHARI(Crispness), HARI(Anti-drape Stiff ness) are increased. With the addition of polyurethane, the decrease of FUKURAMI is diminished and the increase of KOSHI, SHARI, HARI are diminished. 3. As the viscosity of chitosan solution increased, the air permeability value increased. The addition of polyurethane decreased the air permeability.

STUDY ON THERMOSENSITIVITY OF CHITOSAN SCAFFOLD AND ON ITS EFFECTS ON FIBROBLAST PROLIFERATION IN CELL THERAPY FOR SOFT TISSUE AUGMENTATION (연조직 증강을 위한 세포치료 시 비계로서 키토산의 온도 감응성 및 섬유모세포의 증식에 미치는 영향에 관한 연구)

  • Kim, Jung-Ho;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.3
    • /
    • pp.146-152
    • /
    • 2009
  • Traditional surgical method or injection using filler is performed for soft tissue augmentation. Surgical methods have disadvantage of surgical morbidity. Commercially available injectable materials have the disadvantages such as resorption, short-term effect. repeated application and hypersensitivity. Significant shortcoming of cell therapy using autologous fibroblasts is delay of treatment effect. Chitosan/${\beta}$-glycerol phosphate (GP) solution has thermosensitive property and allows sol-gel transition at physiologic pH and temperature. These properties may resolve the delay of treatment effect. The purposes of this study are to evaluate the viscosity and pH changes of chitosan/${\beta}$-GP solutions and to evaluate the effect of chitosan/${\beta}$-GP solution on fibroblast proliferation and production of collagen. We measured the viscosity and pH as function of temperature, of the solution containing 1:0.7, 1:0.75, 1:0.8 chitosan (1, 10, 100, 700 kDa) /${\beta}$-GP. Fibroblasts from ears of 5 rats were cultured in chitosan/${\beta}$-GP solutions for 3 weeks. Cell proliferation and collagen contents were measured every week with WST (water-soluble tetrazolium salt) assay and Collagen assay respectively. The Results are 1) Chitosan(100 kDa<)/${\beta}$-GP solution (1:0.75) showed sol-gel transition at physiologic pH and body temperature and injectable properties. It will enable to resolve the delay in treatment effect 2) Cell proliferation and total collagen contents of the control group were increased with time. However, these decreased after the 1st week in experimental group 3) Collagen contents in the experimental group are higher than that of control group. Chitosan/${\beta}$-GP solution may provide favorable conditions for cell function

Chitosan Derivatives for Target of Specific Tissue in the Body (생체 내 특정 조직의 표적을 위한 키토산 유도체)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.593-602
    • /
    • 2010
  • Chitosan as a natural polymer has superior physicochemical properties such as biocompatibility, biodegradability and nontoxicity, but application of chitosan for therapy of cancer and gene related-disease has been limited by poor solubility in aqueous solution. Therefore, low molecular weight water-soluble chitosan (LMWSC) with high reactivity and strong positive charge can be applied as a delivery system having function to carry in the specific tissue the bioactive material like poor solubility drug, or therapeutic gene and developed as a therapeutic system having good therapeutic efficiency. The most important factor for therapy of various diseases is to reveal the antigen or receptor expressed in specific lesion tissue and the antibody and ligand which can bind with antigen is to introduce at the biomaterials for enhancement the therapeutic efficiency. The studies for cationic synthetic polymer as drug or gene delivery have been actively performed, but it has many problems such as toxicity in the body, therapeutic efficiency. From this point of view, this article demonstrated the introduction of functional groups to target the specific tissue and therapeutic strategy using the modification of LMWSC with free-amine group. The development of these delivery system will provide a positive vision for cancer therapy.

Effect of Irradiation on pH, Color, and Sensory Quality of Cooked Pork Sausage with Added Chitosan Oligomer

  • Cheorun Jo;Lee, Ju-Woon;Lee, Kyong-Haeng;Lee, Hyung-Ja;Byun, Myung-Woo
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.147-151
    • /
    • 2001
  • The combined effect of water-soluble chitosan oligomer and irradiation on changes in quality of perk sausage made with (156 ppm) or without NaNO$_{2}$ was determined. The pH of nonirradiated sausage without NaNO$_{2}$ decreased significantly during 3 wks of storage, but the pH of irradiated sausage did not. Irradiation at 4.5 kGy did not increase the Hunter color a-value but 10 and 20 kGy showed significantly higher a-values in the sausage with chitosan oligomer (p < 0.05). The sausage with NaNO$_{2}$ had higher sensory scores than that without NaNO$_{2}$, and irradiated sausage had lower scores in overall acceptance. Results indicate that further research is needed to achieve consumers sensory standards for irradiating cooked meat products.

  • PDF