• Title/Summary/Keyword: Water-insoluble polymer

Search Result 44, Processing Time 0.032 seconds

Synthesis and Characterization of Sulfonated Polyimide Polymer Electrolyte Membranes

  • Kim, Hyoung-juhn;Morton H. Litt;Nam, Sang-Yong;Shin, Eun-mi
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.458-466
    • /
    • 2003
  • Several copolyimides have been synthesized with different combinations of comonomers in order to study the relationship between conductivity and water insolubility. m-Phenylenediamine (m-PDA), an angled comonomer, was introduced into the polymer backbone to increase water absorption, and resulted in higher proton conductivity. 2,2-bis(trifluoromethyl)benzidine (TFMB) was used as the comonomer to promote water insolubility. There is a good correlation between the water uptake and conductivity of the polyimides. The copolyimides that had high water uptake also generated high proton conductivity. Those polyimides had good mechanical properties. The copolyimides that have 27 mol% of TFMB and 9 mol% of m-PDA have reasonable conductivities and are insoluble in water at 90$^{\circ}C$, even though they have lower conductivities than those of the homopolymer.

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Preparation and Characterization of Cisplatin-Incorporated Chitosan Hydrogels, Microparticles, and Nanoparticles

  • Cha, Ju-Eun;Lee, Won-Bum;Park, Chong-Rae;Cho, Yong-Woo;Ahn, Cheol-Hee;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.573-578
    • /
    • 2006
  • Three different, polymer-platinum conjugates (hydrogels, microparticles, and nanoparticles) were synthesized by complexation of cis-dichlorodiammineplatinum(II) (cisplatin) with partially succinylated glycol chitbsan (PSGC). Succinic anhydride was used as a linker to introduce cisplatin to glycol chitosan (GC). Succinylation of GC was investigated systematically as a function of the molar ratio of succinic anhydride to glucosamine, the methanol content in the reaction media, and the reaction temperature. By controlling the reaction conditions, water-soluble, partially water-soluble, and hydrogel-forming PSGCs were synthesized, and then conjugated with cisplatin. The complexation of cisplatin with water-soluble PSGC via a ligand exchange reaction of platinum from chloride to the carboxylates induced the formation of nano-sized aggregates in aqueous media. The hydrodynamic diameters of PSGC/cisplatin complex nano-aggregates, as determined by light scattering, were 180-300 nm and the critical aggregation concentrations (CACs), as determined by a fluorescence technique using pyrene as a probe, were $20-30{\mu}g/mL$. The conjugation of cisplatin with partially water-soluble PSGC, i.e., borderline between water-soluble and water-insoluble PSGC, produced micro-sized particles $<500{\mu}m$. Cisplatin-complexed PSGC hydrogels were prepared from water-insoluble PSGCs. All of the cisplatin-incorporated, polymer matrices released platinum in a sustained manner without any significant initial burst, suggesting that they may all be useful as slow release systems for cisplatin. The release rate of platinum increased with the morphology changes from hydrogel through microparticle to nanoparticle systems.

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

Preparation of Amino Acid Copolymers/water-insoluble Drug Nanoparticles: Polymer Properties and Processing Variables (아미노산 공중합체/난용성 약물 나노입자의 제조: 고분자 특성 및 가공변수)

  • Yoo Ji Youn;Lee Soo-Jeong;Ahn Cheol-Hee;Choi Ji-Yeun;Lee Jonghwi
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.440-444
    • /
    • 2005
  • An increase in the surface area of drugs by reducing particle sizes from microns to nanometers has been known as an efficient method to improve the bioavailability of water-insoluble drugs. To prevent drug nanoparticles from aggregation during the processes of drug formulation, a limited number of pharmaceutical inactive ingredients such as hydroxypropyl cellulose has been employed as stabilizers or dispersants. In this study, copolymers of hydrophilic and hydrophobic amino acids were synthesized by the ring opening polymerization of their N-carboxyanhydride monomers and evaluated as novel candidates to stabilize the nanoparticles of a water insoluble drug, naproxen. Naproxen nanoparticles stabilized by synthesized amino acid copolymers were successfully prepared in the size of $200\~500nm$ in 60 min by a wet comminution process. Particle size analysis showed that the effective stabilization performance of copolymers required the hydrophobic moiety content to be higher than $10 mol\%$. However, the molecular weight and morphology of copolymers was not the critical parameters in determining the particle size reduction. Their particle size was found to be stable up to 14 days without significant aggregation.

Electrospray-assisted Preparation of Polymer Microparticles Containing Water-insoluble Bioactive Compounds (전기방사법을 이용한 유용성 생리활성성분을 포함한 고분자 마이크로입자 제조)

  • Hwang, Yoon Kyun;Jeong, Min Kuk;Cho, Sung Yeon;Park, Sung Il;Cho, Eun Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • An anti-aging compound ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) rapidly crystallizes in emulsion systems, and a flavonoid 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone bearing a whitening function causes coloration of cosmetic compounds when mixed with metal oxides. In this study, an electrospray method was used to encapsulate water-insoluble bioactive compounds in polymeric microparticles. Poly (methyl methacrylate) and polycaprolactone were used to encapsulate ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) and 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone, respectively. It was found that polymer concentration, the structure of electrospray nozzle, and compatibility between polymers and bioactive compounds were important factors in the preparation of the particles. Polycaprolactone particles encapsulating 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone was effective in preventing coloration of a cosmetic compound when mixed with metal oxides.

Synthesis and Optical Properties of Poly(2-ethynylpyridinum bromide) Having Glycidyl Functionality

  • Gal, Yeong-Soon;Lee, Won-Chul;Lee, Sang-Seob;Bae, Jang-Soon;Kim, Bong-Shik;Jang, Sang-Hee;Jin, Sung-Ho;Park, Jong-Wook
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.131-136
    • /
    • 2000
  • The synthesis of poly(2-ethynylpyridine) having glycidyl functionality was performed by the direct polymerization of 2-ethynylpyridine and epibromohydrin under mild reaction conditions without any initiator and catalysts. The polymerization proceeded well to give the resulting poly(2-ethynylpyridinium bromide) with a glycidyl functionality having relativity high molecular weight in high yields. The polymer structure was characterized by various instrumental methods to have the conjugated polymer backbone structure having glycidyl functionality. This ionic polymer was completely soluble in water, methanol, DMF, DMSO, and N,N-dimethylacetamide, but insoluble in THF, toluene, acetone, nitrobenzene, and n-hexane. This polymer system exhibited the UV-visible absorption around 300 and 520 nm and red photoluminescence spectrum around 725 nm.

  • PDF

Synthesis and Properties of Poly[2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium bromide] and Poly [2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium tetraphenylborate]

  • Gal, Yeong-Soon;Jin, Sung-Ho;Lee, Won-Chul;Kim, Sang-Youl
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.407-412
    • /
    • 2004
  • A new hydroxyl group-containing conjugated ionic polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide], was synthesized by the activated polymerization of 2-ethynylpyridine with p-(2-bromoethyl) phenol without any additional initiator or catalyst. The polymerization proceeded well to give a moderate yield (65%) of polymer at a reaction temparature of 90$^{\circ}C$. Another polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium tetraphenylborate], was readily prepared by the ion-exchange reaction of poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide] with sodium tetraphenylborate. These polymers were completely soluble in organic solvents such as DMF, DMSO, and acetone, but insoluble in water and ether. Instrumental analyses, such as NMR, IR, and UV-Vis spectroscopies, indicated that the new materials have conjugated polymer backbone systems with the designed substituents and counter anions. X-Ray diffraction analyses of the polymers indicated that they were mostly amorphous.

Retention and Drainage Characteristics with Inverse Emulsion Type C-PAM

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.24-30
    • /
    • 2006
  • This study was performed to characterize inverse emulsion type cationic polyacrylamide (PAM) and to compare with powder and salt dispersion type PAMs as a retention and drainage aid. Salt dispersion type PAM has defects of high amount of salt which increases conductivity of white water, low active polymer contents and relatively worse retention and drainage properties than others because of its low molecular weight. Powder type PAM has benefit of high active polymer contents and good retention and drainage properties, but defects of low dissolution speed and insoluble particle generation were observed. However, inverse emulsion type showed the best retention and drainage aids among them by controlling molecular weight and morphology easily and it had relatively higher active polymer contents and better solubility.

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.