• Title/Summary/Keyword: Water-ethanol

Search Result 2,884, Processing Time 0.024 seconds

Comparison of the Antioxidant Activities of Organic Solvent Fractions of Leaf and Root Extracts of Peucedanum insolens Kitagawa (왕산방풍의 잎과 뿌리의 유기용매 분획물에서의 항산화 활성 비교)

  • Myong-Seok Oh;Nandintsetseg Narantuya;Chan-Ju Park;Ghilsoo Nam;Sik-Jae Cho;Ja-Young Moon
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.138-148
    • /
    • 2023
  • This study compared and analyzed the antioxidant activities of various organic solvent fractions from the leaves and roots of Peucedanum insolens Kitagawa. For this study, the dried leaves and roots of P. insolens Kitagawa were first extracted using 70% ethanol. The extracts were sequentially sub-fractionated in the order of hexane, chloroform, ethyl acetate, n-butanol, and water. The results revealed that the distribution of total phenolic contents by organic solvent fractions showed the same pattern in both the leaves and roots, with the highest in the ethyl acetate fraction (101.1±1.0 mg vs 71.2±3.4 mg of GAE/mg), but the lowest content in the hexane fraction (9.5±0.2 mg vs 7.5±2.1 mg of GAE/mg). The distribution of total flavonoid content in the organic solvent fractions showed the same pattern as that of total phenolic content. The results of DPPH, ABTS, and FRAP assays showed that the leaf and root extracts exhibited free radical scavenging activity in the same pattern, particularly, the ethyl acetate fraction had the highest activity. These results indicate that not only the roots of P. insolens Kitagawa but also the leaves possess potential substances that exhibit strong antioxidant activity. Significant correlations (R=0.903, p<0.0001, DPPH radical; R=0.891, p<0.001, ABTS radical; R=0.745, p<0.05, FRAP radical) between total phenolics and radical scavenging activities, but also significant correlations (R=0.867, p<0.001, DPPH vs. ABTS radicals; R=0.882, p<0.0001, DPPH vs. FRAP radicals; R=0.973, p<0.0001, ABTS vs. FRAP radicals) between radical scavenging activities were found in the organic solvent fractions. Therefore, as in the roots of P. insolens Kitagawa, the leaves possess strong antioxidant capacity and can be used as the main antioxidant material.

Inhibitory Effect of Kailan (Brassica oleracea L.) Extract on LPS-Induced Inflammatory Response in Macrophages (카이란(Brassica oleracea L.) 추출물의 대식세포 내에서 LPS에 의한 염증 반응 억제 효과)

  • DanHee Yoo;In Chul Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.3
    • /
    • pp.255-263
    • /
    • 2024
  • In this study, antioxidant and anti-inflammatory activity was studied to confirm the value of kailan (Brassica oleracea L.) as a natural material for cosmetics. For this study measure the antioxidative activity, total polyphenol content was measured, and DPPH and ABTS scavenging activity assays were conducted. As a result of measuring the total polyphenol content of hot water extract of kailan (KRD) and 70% ethanol extract of kailan (KRE), it was found to contain 124.3 mg TAE/100 g and 144.1 mg TAE/100 g, respectively. As a result of DPPH and ABTS radical scavenging ability, it was confirmed that the efficacy was concentration dependent. After treating the cells with LPS, a stimulant, for 2 hours, an experiment was conducted by treating RAW 264.7 cells with KRD and KRE at concentrations of 10, 50, and 100 ㎍/ml. The nitric oxide production inhibitory activity of KRD and KRE showed an inhibitory effect of about 30% at a concentration of 100 ㎍/ml. Cells cultured for 18 hours after stimulant treatment were obtained and used in experiments. The cells obtained in this way were lysed, protein and mRNA were extracted, and the expression of inflammatory mediators' inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was confirmed. It was confirmed that the protein mRNA expression of iNOS and COX-2, measured through western blot and reverse transcription-PCR, was inhibited in a concentration-dependent manner. Based on this, it is judged that has the potential to be used as a natural material in cosmetics.

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 1974
  • In order to prepare the mashing materials for 'Takju', Korean wine, with potatoes, theywere steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash, and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows, 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively. 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D40^{\circ}$ 30' 128 W.V. and 13.2 A.U.. 3. The effects of various brewing conditions on the contents of Takju mashes were as follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing were 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol, fusel oil and Formol nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidifies of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%). 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formol nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bacteria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8,\;1.5{\times}10^8$), and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju. was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes(4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF

Studies on Takju Brewing with Potatoes (감자를 이용(利用)한 탁주제조(濁酒製造)에 관(關)한 연구(硏究))

  • Kim, S.Y.;Oh, M.J.;Kim, C.J.
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.67-81
    • /
    • 1974
  • In order to prepare the mashing materials for "Takju", Korean wine, with potatoes they were steamed, dryed, and pulverized, and their chemical components were analyzed. As a brewing method of Takju with potatoes, general 2nd stage process with Ipkuk and Bunkuk (enzyme sources), commonly used now, was carried out and the effects of preparing conditions of Ipkuk(koji) with potato flour, mashing materials and brewing conditions on the contents of Takju mash and of storing time on the contents of Takju, were investigated and the results obtained were summarized as follows. 1. Chemical components of steamed potatoes and potato flour were Moisture; 76.2, 10.8%, Total sugar; 16.1, 69.8%, Reducing sugar; 3.45, 13.4%, Crude protein; 2.1, 11.3%, Total acid; 0.012, 0.023% and Volatile acid; 0.0012, 0.0025% respectively 2. The most effective preparing conditions of Ipkuk with potato flour were to incubate the potato flour added 40-50% of water for 48 hours by general preparing process of Koji, and liquefying and saccharogenic amylase activities of Ipkuk incubated at above conditions were $D_{40^{\circ}}{^{30{\prime}}}$ 128 W.V. and 13.2 A. U. 3. The effects of various brewing conditions on the contents of Takju mashes wereas follows; 1) Optimum ratio of mashing water and materials for Takju brewing with potato flour was 140ml of water to 60g of flour in 1st stage and 260ml to 140g in 2nd stage. 2) Optimum fermentating times and temperatures for Takju brewing were at $25^{\circ}C$ for 48 hours in 1st stage and at $30^{\circ}C$ for 48 hours in 2nd stage. 3) Optimum amounts of enzyme sources for Takju brewing 20-30% of Ipkuk and 0.5% of Bunkuk in 1st stage and 1.0% of Bunkuk in 2nd stage. 4) Methanol content of the Takju mash brewed with raw potato flour was much more than that with steamed potato flour. 5) Alcohol fusel oil and Formal nitrogen contents of the Takju mash brewed with potato flour were less than that with wheat flour, on the contrary, methanol contents and total acidities of them were showed conversely above. 4. The changes of chemical components and microflora in the mashes during the brewing potato flour Takju were as follows; 1) The accumulation of ethanol followed rapidly in early stage, being the highest at 72 hours (11.9%) 2) Total sugar content of the mash was decreased considerably within 48-72 hours, being 2.62% at 72 hours, and thereafter slowly. 3) Reducing sugar of the mash had a tendency of decreasing, being 0.29% at 48 hours. 4) Total acidity, volatile acidity and Formal nitrogen content of the mash were increased slowly, being 7.30, 0.20, 2.55 at 48 hours. 5) Total cells of yeast appeared the highest in 72 hours ($2.1{\times}10^8$) and thereafter decreased slowly. 6) Total cells of bacteria appeared the highest in 48 hours ($2.4{\times}10^8$) and thereafter decreased or increased slightly. 5. Takju was made from the fermented mash mixed with water to be 6% of alcohol content, and the change of alcohol content, total acidity, total cells of yeast and bateria during the storing at $30^{\circ}C$ were as follows; 1) Alcohol content of Takju was increased slightly at 24 hours (6.2%), and thereafter decreased slowly. 2) Total acidity of Takju was increased gradually, being 6.1 at 72 hours 3) Total cells of yeast and bacteria appeared the highest at 48 hours ($2.3{\times}10^8$, $1.5{\times}10^8$) and thereafter decreased slowly. 6. Alcohol content, total acidity and Formol nitrogen content of the Takju brewed with potato flour Ipkuk or wheat flour Ipkuk and steamed potatoes(1:5) were 9.8-11.3%, 5.8-7.4, 2.5-3.3 respectively, and the color of the Takju was similar to commercial Takju. 7. The results of sensory test for various experimental Takju, showed that the Takjues brewed with the materials combined with wheat flour and steamed potatoes (4:5 or 3.5:7.5) were not significantly different in color, taste and flavor from commercial Takju, However, those with potato flour and wheat flour (1:1 or 7:3) were significantly different from commercial Takju.

  • PDF