• 제목/요약/키워드: Water-deprived

검색결과 38건 처리시간 0.024초

황결핍 된 Chlamydomonas Reinhardtii 배양액에서 수소생산을 위한 제한 인자들의 영향 (Effect of Limiting Factors for Hydrogen Production in Sulfur Deprived Chlamydomonas Reinhardtii)

  • 김준표;심상준
    • 한국수소및신에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.286-292
    • /
    • 2006
  • Chlamydomonas reinhardtii is a green algae that can use light energy and water to produce hydrogen under anaerobic condition. This work reports the effect of limiting factors on hydrogen production in sulfur deprived anaerobic C. reinhardtii culture. In order to confirm the relationship between hydrogen production and limiting factors such as residual PSII activity and endogenic substrate degradation, the increase in chlorophyll concentration and the decrease in starch concentration was investigated during sulfur deprivation. The overall hydrogen production increased depending on cell density in range of $0.4{\sim}0.96\;g$ DCW/l. At this time, the increase in chlorophyll concentration during 24 h after sulfur deprivation increased in proportion to hydrogen production, however, the decrease in starch concentration was not proportional to that. Therefore, hydrogen production under sulfur deprivation using green alga was closely associated with the residual PSII activity than the endogenic substrate degradation.

Dracunculiasis in oral and maxillofacial surgery

  • Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제42권2호
    • /
    • pp.67-76
    • /
    • 2016
  • Dracunculiasis, otherwise known as guinea worm disease (GWD), is caused by infection with the nematode Dracunculus medinensis. This nematode is transmitted to humans exclusively via contaminated drinking water. The transmitting vectors are Cyclops copepods (water fleas), which are tiny free-swimming crustaceans usually found abundantly in freshwater ponds. Humans can acquire GWD by drinking water that contains vectors infected with guinea worm larvae. This disease is prevalent in some of the most deprived areas of the world, and no vaccine or medicine is currently available. International efforts to eradicate dracunculiasis began in the early 1980s. Most dentists and maxillofacial surgeons have neglected this kind of parasite infection. However, when performing charitable work in developing countries near the tropic lines or other regions where GWD is endemic, it is important to consider GWD in cases of swelling or tumors of unknown origin. This paper reviews the pathogenesis, epidemiology, clinical criteria, diagnostic criteria, treatment, and prevention of dracunculiasis. It also summarizes important factors for maxillofacial surgeons to consider.

부족량기대치를 이용한 배수관망의 신뢰최적설계 (Optimum Design of Water Distribution Network with a Reliability Measure of Expected Shortage)

  • 박희경;현인환;박중현
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.21-32
    • /
    • 1997
  • Optimum design of water distribution network(WDN) in many times means just reducing redundancy. Given only a few situations are taken into consideration for such design, WDN deprived of inherited redundancy may not work properly in some unconsidered cases. Quantifying redundancy and incorporating it into the optimal design process will be a way of overcoming just reduction of redundancy. Expected shortage is developed as a reliability surrogate in WDN. It is an indicator of the frequency, duration and severity of failure. Using this surrogate, Expected Shortage Optimization Model (ESOM) is developed. ESOM is tested with an example network and results are analyzed and compared with those from other reliability models. The analysis results indicate that expected shortage is a quantitative surrogate measure, especially, good in comparing different designs and obtaining tradeoff between cost and. reliability. In addition, compared other models, ESOM is also proved useful in optimizing WDN with reliability and powerful in controlling reliability directly in the optimization process, even if computational burden is high. Future studies are suggested which focus on how to increase applicability and flexibility of ESOM.

  • PDF

절수시 Mongolian Gerbil 콩팥에서 TonEBP와 Urea transporter의 발현 변화 (Renal Expression of TonEBP and Urea Transporter in the Water-deprived Mongolian Gerbil(Meriones unguiculatus))

  • 박용덕;김성중;정주영
    • Applied Microscopy
    • /
    • 제37권4호
    • /
    • pp.271-280
    • /
    • 2007
  • Tonicity responsive enhancer binding protein(TonEBP)는 콩팥에서 osmolyte의 세포내 축적을 촉매해 주는 전사조절인자로 높은 삼투농도에서 세포를 보호하는데 중요한 역할을 수행한다. 고장성환경은 TonEBP의 양적 증가와 핵 내 분포의 증가를 통해 TonEBP의 활성을 자극한다. 또한 TonEBP는 콩팥 수질내 요소축적에 중요한 역할을 하는 UT-A의 전사를 조절하는 것으로도 알려져 있다. 따라서 본 연구에서는 콩팥수질내 TonEBP와 UT-A의 기능과 상관관계를 밝히는 연구의 일환으로 다른 동물보다 급수가 제한된 환경에서 더 오래 살아남을 수 있는 수분대사능력을 가지고 있는 Mongolian gerbil을 이용하여, 절수로 인한 고장성환경의 유발에서 TonEBP와 UT-A에 대한 발현 변화를 관찰하고자 하였다. 절수에 따른 TonEBP와 UT-A의 발현 양상을 연구하기 위해, 먼저 Mongoian gerbil 각 5마리씩 3그룹으로 나누어 절수 실험을 실시하였고, 면역조직화학법을 실시하여 다음과 같은 결과를 얻었다. 정상대조군에서 TonEBP의 면역반응성은 속수질 세포들의 핵 내에 주로 분포하였으며, 절수 7일군에서 면역조직화학검사 결과, 속수질집합관에서의 염색성은 대조군에 비해 증가하였고, 특히 바깥수질 부위에 속수질에서 요세관의 가는 부분에서의 증가가 두드러졌다. 절수 14일군에서 염색성이 대조군보다 오히려 감소하였으며, 콩팥의 조직학적 손상이 관찰되었다. UT-A의 경우 바깥수질 속줄무늬층의 짧은-헨레고리가는내림부분과 정상군에서는 미약한 양성반응을 나타낸 속수질 초기부분의 긴-헨레고리가는내림부분에서 강한 발현 양상을 나타내었고, 속수질의 초기에서 중간부위의 속수질집합관도 강한 발현 양상을 확인할 수 있었다. 그러나 속수질 말단부위의 속수질집합관은 콩팥유두 끝으로 갈수록 발현량이 감소하는 것을 확인할 수 있었다. 이상의 결과는 Mongolian gerbil을 이용한 절수모델에서 증가된 콩팥수질의 Tonicity에 의해 TonEBP의 발현이 증가하고 이에 따라 UT-A의 발현도 동반하여 증가하는 것을 확인하였고, 또한 이렇게 증가된 TonEBP는 UT의 전사를 조절하여 UT를 증가시켜 오줌농축기전을 향상시키는 것으로 생각된다. 이는 속수질 세포의 스트레스에 대한 세포방어기전으로 생각된다. 그러나 절수가 계속되면 이런 적응반응에 한계를 지나쳐 오히려 TonEBP와 UT-A의 발현이 감소함을 확인 할 수 있었다.

태아기와 수유기의 식이제한과 환경이 성장후 신경전달물질의 함량 및 행동에 미치는 영향 (Effects of Nutritional Deprivation During Prenatal and/or Lactating Periods and Environment on Concentration of Neurotransmitters and Behavior in Later Life)

  • 김선희;김숙희
    • Journal of Nutrition and Health
    • /
    • 제16권4호
    • /
    • pp.243-252
    • /
    • 1983
  • This study was undertaken to invesigate the effect of early nutritional deprivation and environment on neurotransmitter concentrations and behavior in later life. The restoring process of rats fed foods ad libitum after 50% restriction of the casein or the Korean diet during the prenatal and/or the lactating periods was observed. There were two rearing conditions, isolated and enriched, after weaning. Behavioral development was measured by the Y- shaped water maze and the open field test. The neurotransmitters were analyzed after sacrifice at the age of 21 weeks. The results are summarized as follows. 1) The body weight impairment by dietary restriction during the prenatal and lactating periods could be restored within 18 weeks after weaning in case of living in a classical cage. The effect of quantitative restriction was bigger in the Korean diet than in the casein diet. 2) The brain weight was decreased by nutritional deprivation. Environmental enrichment increased it slightly. 3) The concentration of neurotransmitters, norepinephrine, dopamine, and serotonin, were not shown any traces of the dietary restriction at the age of 21 weeks. 4) In the maze test, the deprived rats made more errors than the nourished and the rats fed the Korean diet more than those fed the cascin dict. The environmental enrichment could decrease the number of errors. 5) In the open field test, the dietary deprived groups showed less reaction time, more squares entered in the field, and less number of fecal boli than the nourished among the environmentally isolated rats. However, rats living in the enriched cage without experience of nutritional stress showed the lowest emotionality and the elevated exploratory activity.

  • PDF

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

홍삼 수용성 추출물이 PC12 세포사멸에 미치는 영향 (Effect of Korea Red Ginseng Extract on PC12 Cell Death Induced by Serum Deprivation)

  • 이상현;윤용갑
    • 한방재활의학과학회지
    • /
    • 제19권2호
    • /
    • pp.103-112
    • /
    • 2009
  • Objectives : This study was to evaluate the pharmacological effect of Korea Red Ginseng aqueous extract (KRGE) on serum-deprived apoptosis of neuronal-like pheochromocytoma PC12 cells and to investigate its underlying action mechanism. Methods : KRGE was prepared by extracting Korea Red Ginseng with hot water and concentrating using a vacuum evaporator. Cell viability was determined after incubation of cells with KRGE or chemical inhibitor in serum-deprived medium for 60 h by counting intact nuclei following lysing of the cell membrane. Caspase activities were measured using chromogenic substrates and signal-associated protein phosphorylation and cytochrome c release were determined by Western blot analyses using their specific antibodies. Results : Serum deprivation induced PC12 cell death, which was accompanied by typical morphological features of apoptotic cell, such as nuclear fragmentation, caspase-3 activation, and cytochrome c release. This apoptotic cell death was significantly inhibited by KRGE and caspase-3 inhibitor, but not by the addition of NMA, ODQ, and PD98059. KRGE promoted phosphorylation of Akt and Bad, and this phosphorylation was inhibited by the PI3K inhibitor LY92004. In addition, this inhibitor also reversed KRGE-mediated protection of PC 12 cells from serum deprivation. These results suggested that KRGE protects PC12 cells from serum deprivation-induced apoptosis through the activation of PI3K/Akt-dependent Bad phosphorylation and cytochrome c release, resulting in caspase-3 activation. Conclusions : KRGE should be considered as a potential therapeutic drug for brain diseases including stroke induced by apoptosis of neuronal cells.

Physiological Relationship Between Thirst Level and Feed Intake in Goats Fed on Alfalfa Hay Cubes

  • Prasetiyono, Bambang W.H.E.;Sunagawa, Katsunori;Shinjo, Akihisa;Shiroma, Sadao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1536-1541
    • /
    • 2000
  • The present study was carried out to measure changes of feed intake and thirst level caused by water deprivation in goats fed on dry feed and to elucidate the relationship between those two parameters. Water deprivation significantly (p<0.01) decreased cumulative feed intake and rate of eating at 30, 60, 90 and 120 min, respectively, after feed presentation. Cumulative feed intake, after completion of 2 h feeding, was reduced by about 20, 21 and 64 % due to water deprivation during feeding for 2 h (WD2), for 22 h (WD22) and for 46 h (WD46), respectively, compared to free access to water (FAW). Compared to the FAW, WD2, WD22 and WD46 increased thirst level by about 5, 5 and 9 times, respectively. Mean thirst level (X, g/30 min) was negatively correlated with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=1302-0.2 X, $r^2=0.97$, p<0.05). Water deprivation depressed plasma volume and there was a significant positive regression between plasma volume (X, ml) and cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=-1003+0.6 X, $r^2=0.99$, p<0.01). Mean plasma osmolality (X, mOsmol/l) correlated significantly and negatively with cumulative feed intake (Y, g DM) after completion of 2h feeding (Y=27004-84.9 X, $r^2=0.95$, p<0.05). In conclusion, a decrease of feed intake during water deprivation is mainly due to an increase of thirst level quantitatively, and the act of feeding itself induces thirst more than the length of water-deprivation periods in goats fed on dry feeds. The present findings suggest that plasma osmolality and plasma volume which affect thirst level are involved in the decrease of feed intake in water-deprived goats.

Effect of water scarcity during thermal-humidity exposure on the mineral footprint of sheep

  • Nejad, Jalil Ghassemi;Lee, Bae-Hun;Kim, Ji-Yung;Park, Kyu-Hyun;Kim, Won-Seob;Sung, Kyung-Il;Lee, Hong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.1940-1947
    • /
    • 2020
  • Objective: Combination of two stressors on alteration of mineral footprints in animals needs due attention to meet maximum production and welfare, particularly in grazing sheep. This study tested whether ewes (Ovis aries) exposed to water deprivation and thermal-humidity stressors had altered mineral footprints in their wool, serum, urine, and feces. Methods: Nine ewes (age = 3 years; mean body weight = 41±3.5 kg) were divided among a control group with free access to water, and treatment groups with water deprivation lasting either 2 h (2hWD) or 3 h (3hWD) after feeding. Using a 3×3 Latin square design, animals were assigned to treatment groups for three sampling periods of 21 days each (n = 9). Blood was collected by jugular venipuncture. Wool was collected at the end of periods 2 and 3. Metabolic crates designed with metal grated floors were used for urine and feces collection. We measured sodium (Na), magnesium (Mg), phosphorus (P), chloride (Cl), calcium (Ca), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn). Results: The wool mineral levels did not differ between the treatment groups, although K was marginally lower (p = 0.10) in the 2hWD group. The serum and urine mineral levels did not differ between the treatments (p>0.05). Fecal K was significantly lower in the 2hWD group than in the other groups (p≤0.05). Conclusion: In conclusion, water deprivation and thermal-humidity exposure altered the excretion of K, but not of other minerals, in the wool, urine, feces, or serum of ewes. Thus, no additional mineral supplementation is needed for water deprived ewes during thermalhumidity exposure.

A Simple Behavioral Paradigm to Measure Impulsive Behavior in an Animal Model of Attention Deficit Hyperactivity Disorder (ADHD) of the Spontaneously Hypertensive Rats

  • Kim, Pitna;Choi, In-Ha;Dela Pena, Ike Campomayor;Kim, Hee-Jin;Kwon, Kyung-Ja;Park, Jin-Hee;Han, Seol-Heui;Ryu, Jong-Hoon;Cheong, Jae-Hoon;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.125-131
    • /
    • 2012
  • Impulsiveness is an important component of many psychiatric disorders including Attention-deficit/hyperactivity disorder (ADHD). Although the neurobiological basis of ADHD is unresolved, behavioral tests in animal models have become indispensable tools for improving our understanding of this disorder. In the punishment/extinction paradigm, impulsivity is shown by subjects that persevere with responding despite punishment or unrewarded responses. Exploiting this principle, we developed a new behavioral test that would evaluate impulsivity in the most validated animal model of ADHD of the Spontaneously Hypertensive rat (SHR) as compared with the normotensive "control" strain, the Wistar Kyoto rat (WKY). In this paradigm we call the Electro-Foot Shock aversive water Drinking test (EFSDT), water-deprived rats should pass over an electrified quadrant of the EFSDT apparatus to drink water. We reasoned that impulsive animals show increased frequency to drink water even with the presentation of an aversive consequence (electro-shock). Through this assay, we showed that the SHR was more impulsive than the WKY as it demonstrated more "drinking attempts" and drinking frequency. Methylphenidate, the most widely used ADHD medication, significantly reduced drinking frequency of both SHR and WKY in the EFSDT. Thus, the present assay may be considered as another behavioral tool to measure impulsivity in animal disease models, especially in the context of ADHD.