• Title/Summary/Keyword: Water-cooled slag

Search Result 25, Processing Time 0.024 seconds

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -I. Physico-chemical and Mineralogical Characteristics (급랭광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -I. 급랭광재(急冷鑛滓)의 특성(特性))

  • Shin, Jae-Sung;Lim, Dong-Kyu;Kim, Maun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.343-346
    • /
    • 1983
  • This paper was prepared to characterize a physico-chemical and mineralogical examination on blast furnace slag as a source of silicate fertilizer, which was quenched with high pressure water stream in process of iron refinery at Pohang Iron and Steel Manufacturing Inc. Quenched slag was more coarse in particle size compared to present commercial silicate fertilizer milled from air-cooled slag and mostly generated in size of 1 to 2 mm. The total chemical composition of quenched and air-cooled slags was same but mineralogical composition was quite different. The former was composed of amorphous materials resulting in more soluble silica content, however, the latter contained dominantly crystalline minerals such as akermanite, gehlenite and wollastonite which meant less soluble ones. Latent cementing property and angular surface of gain of the slag made it difficult to apply the slag directly, however, it could be used as a source of silicate fertilizer and soil ammendment.

  • PDF

Characterisitics of the Copper Converter Slag -Recovery of Copper from the Copper Converter Slag(I)- (동제연소 전노슬래그의 생성에 관하여 -동제연소 전노슬래그로 부터 동의 회수(I)-)

  • Kim, Mahn;Kim, Mi-Sung;Yoo, Taik-Soo;Oh, Jae-Hyun
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 1992
  • As a basic study to recover the copper from the copper converter slag, the characterisitcs of converter slag was studied. The results obtained in this work are as follows. 1. The copper converter slag is composed of Cu, $Cu_2$S, $Fe_3$$O_4$, Fayalite and silicate. 2. It is supposed that magnetite in converter slag is oxidized to hematite at $720^{\circ}C$ and this phase is soluted to fayalite. 3. As the converter slag is added in the water solution, pH increased and the heavy metal ions in the water are adsorbed on the slag. 4. Work index of the converter slag cooled for the 10 hour and the 2 hour are 25~27 kWh/ton and 35 kWh/ton, respectively. 5. In the case of grinding test of converter slag, fayalite in converter slag is easily grinded than magnetite in converter slag.

  • PDF

A Study on the Properties and Methods of Electrode System for Tapping of Melts (출탕유도전극을 이용한 용융물의 출탕방법 및 특성에 대한 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.499-503
    • /
    • 2016
  • For safety and economy reasons, hazardous waste including radioactive waste is desired to be converted into stable waste forms with a maximum volume reduction. High temperature melting technology using a plasma torch system can effectively treat even the non-flammable waste as desired. By far, one of the most difficult process for melting the non-flammable waste is a tapping of melts because the melting point of a residual slag in the tapping hole is high and because the viscosity of the melt increases sharply when tapping out. In case of a stationary furnace with a slant tapping port on the side of furnace, a certain amount of melts is left in the tapping hole after tapping out. Because of this, at every end of a melting cycle, the tapping hole needs to be opened by tapping device. The developed tapping device of melts based on both a guide electrode and auxiliary electrode is adequate for the application to discharge of melts except that the consumption of the guide electrode is somewhat faster than expected. Melt is collected in the water cooled vessel.

Quantitative Evaluation of Free CaO in Electric Arc Furnace Reduction Slag using the Ethylene Glycol Method (에틸렌 글리콜법을 이용한 전기로 환원슬래그의 Free CaO 정량 평가에 관한 연구)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • Blast furnace slag has been actively used as a substitute for cement in the construction field with high value-added through resource recycling research. However, most of the slag cannot find a clear recycling purpose. This is because some slags contain unstable materials and are used for road-use asphalt and embankment, which are low value-added materials. Electric arc furnace reduction slag(ERS) has been reported to contain a large amount of unstable free CaO due to deoxidation and component adjustment. In this study, free CaO of ERS which is generated in Korean steelmakers is quantitatively evaluated by using ethylene glycol method. As a result of free CaO quantitative evaluation of ERS, it was confirmed that there is a big difference according to the location of each field. In addition, ERS generally existed in powder form as undifferentiated characteristics, but it was confirmed that free CaO content was different due to hydration product in aggregate form due to water treatment. In addition, free CaO is an amorphous material and its crystallization characteristics are different due to the influence of temperature when it is cooled. ERS requires a long-term aging period as it contains a lot of free CaO.