• Title/Summary/Keyword: Water-assisted

Search Result 284, Processing Time 0.028 seconds

Analysis of spray cone angle of air assisted flash atomization (공기보조식 (air-assisted) 플래쉬 분무의 분무 각 확대 특성 연구)

  • Yu, Tae-U;Kim, Sae-Won;Bang, Byong-Ryeol
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • When the water jets heated up to the saturation temperature at a high line pressure are sprayed into a reduced (atmospheric) pressure through an air-assisted nozzle, the jets experience sudden exposure into a reduced pressure, get superheated and produce steam bubbles while atomization processes of jets are taking place. This process is called flash atomization. In this study the flash atomization of superheated water jets assisted by air has been studied. Sprays with flash atomization have been photographed at various water and air flow rates and water superheats. It has been found that the spray angle with flash atomization increases with water superheat and water flow rate but decreases with air flow rate. The degree of change of spray angle has been analyzed and correlated as a function of superheat, air and water flow rates.

  • PDF

Sustainable water extraction of anthocyanins in aronia (Aronia melanocarpa L.) using conventional and ultrasonic-assisted method

  • Jang, Youngbin;Koh, Eunmi
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.527-534
    • /
    • 2021
  • The demand for sustainable extraction of bioactive compounds from food matrices has been increasing. Water extraction of anthocyanins in aronia was investigated using conventional and ultrasonic-assisted methods. The optimum extraction conditions for the conventional method included a sample-to-water ratio of 1:40 g/mL, extraction temperature 71℃, and extraction time of 39 min. The optimized conditions for ultrasonic-assisted extraction were a sample-to-water ratio of 1:40 g/mL, extraction temperature 80℃, extraction time of 20 min, and an amplitude of 87.2 ㎛. The anthocyanin contents of the two extracts were 155.32 and 158.02 mg/100 g fresh weight, respectively. The major anthocyanins were cyanidin 3-galactoside (65% of the total) and cyanidin 3-arabinoside (30% of the total). The contents of individual anthocyanins and phenolic acids were not significantly different between the two optimized extracts.

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

Excimer laser micromachining process assisted by liquid (액체 보조 엑시머 레이저 미세가공 공정)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.60-65
    • /
    • 2006
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhacement and particle removal from the surface. In this work, the liquid-assisted excimer laser ablation process is examined fer polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), Si, and alumina with emphasis on ablation enhacement, surface topography, and debris formation. In the case of PET and PMMA, the effect of liquid is analyzed both fer thin water film and bulk water. As the ablation enhanement by liquid is already known for Si and alumina, the analysis focuses on surface topography and debris formation resulting from the liquid-assisted laser ablation process. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. It is also revealed that the liquid can significantly improve the surface quality by reducing the debris deposition. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface toporaphy is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF

Abrasive-Assisted High Energy Water-Jet Machining Characteristics of Solid Wood

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • The application of abrasive-assisted high energy water-jet was investigated as a possible new method of cutting wood. In this study the maximum cutting speeds for species of various wood density were determined and water-jet machining characteristics were investigated for sixteen Korean domestic species. The maximum cutting speed ranged from 200 to 750 mm/min. The results indicate that wood density affects machining characteristics such as maximum cutting speed, surface roughness, and kerf width. Roughness of surface generated increased and kerf width decreased as penetration depth increased.

Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure (물을 첨가한 탄소나노튜브의 저온 저압 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF

A Study on the Operating Performance of Solar Assisted Hot Water System for Apartment Houses (공동주택용 태양열원 급탕시스템의 운전성능 연구)

  • 이윤규;황인주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.928-936
    • /
    • 2003
  • In the present study, feasibility investigation on the solar assisted hot water supply system for apartment houses was carried out by the review of service facility and heat load pattern. Also analysis and experiment of the small sized system model were performed. This hybrid system are consists of solar collector, heat storage tank, controller, and gas boiler using LPG as a secondary heat source. The analytical results showed a good agreement with experimental data. We found that this hybrid system could reduce the energy cost by 30% for hot water compared to typical boiler system in the apartment houses. Also we showed that this model could be used for the energy and economic analysis of the hybrid system.

Characterization of Single-walled Carbon Nanotubes Synthesized by Water-assisted Catalytic Chemical Vapor Deposition

  • Lee, Yeon-Ja;Kim, Bawl;Yu, Zhao;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.381-381
    • /
    • 2011
  • The influence of the water vapor on the growth of single-walled carbon nanotubes (SWCNTs) was investigated. SWCNTs were synthesized by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst with injection of water vapor. The morphologies and structures of the water-assisted SWCNTs were investigated according to the growth conditions such as water vapor concentrations, flow rate of the gas, furnace temperature, and growth time. Water-assisted SWCNTs exhibited large bundle morphological features with well-alignment of each CNT, while SWCNTs synthesized in the absence of water vapor showed entangled CNT with the random orientation. We also found that the diameter of the SWCNT bundle could be controlled by the growth condition. In our optimal growth condition, the product yield and the purity were 300 wt. % and 75%, which were 7.5 and 2.5 times higher than those of SWCNTs synthesized without water vapor, respectively. More detail discussion will be offered at the poster presentation.

  • PDF

Environmentally Assisted Cracking of Alloys at Temperatures near and above the Critical Temperature of Water

  • Watanabe, Yutaka
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • Physical properties of water, such as dielectric constant and ionic product, significantly vary with the density of water. In the supercritical conditions, since density of water widely varies with pressure, pressure has a strong influence on physical properties of water. Dielectric constant represents a character of water as a solvent, which determines solubility of an inorganic compound including metal oxides. Dissociation equilibrium of an acid is also strongly dependent on water density. Dissociation constant of acid rises with increased density of water, resulting in drop of pH. Density of water and the density-related physical properties of water, therefore, are the major governing factors of corrosion and environmentally assisted cracking of metals in supercritical aqueous solutions. This paper discusses importance of "physical properties of water" in understanding corrosion and cracking behavior of alloys in supercritical water environments, based on experimental data and estimated solubility of metal oxides. It has been pointed out that the water density can have significant effects on stress corrosion cracking (SCC) susceptibility of metals in supercritical water, when dissolution of metal plays the key role in the cracking phenomena.

Excimer Laser Micromachining of Polymers Assisted by Liquid (액체 보조 방식의 Excimer 레이저 폴리머 미세가공)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Previous studies demonstrated that laser ablation under transparent liquid can result in ablation enhancement and particle removal from the surface. Although the ablation enhancement by liquid is already known for semiconductor and metal, the phenomena of polymer ablation have not been studied. In this work, tile liquid-assisted excimer laser ablation process is examined for polymer materials, such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) with emphasis on ablation enhancement and surface topography. In the case of PET and PMMA, the effect of liquid is analyzed both for thin water film and bulk water. The results show that application of liquid increases the ablation rate of PMMA while that of PET remains unchanged even in the liquid-assisted process. However, the surface roughness is generally deteriorated in the liquid-assisted process. The surface topography is found to be strongly dependent on the method of liquid application, i.e., thin film or bulk liquid.

  • PDF