• 제목/요약/키워드: Water-Level Prediction Model

검색결과 207건 처리시간 0.027초

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구 (A Study on LSTM-based water level prediction model and suitability evaluation)

  • 이은지;박형욱;김은주
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.56-62
    • /
    • 2022
  • 배수지는 정수처리 된 물을 급수하기 위해 정수물을 모아두는 저장소로서, 물의 수요량에 따라 급수량을 조절하여 안정적으로 물을 공급하기 위해 배수지의 수위 관리는 매우 중요하다. 현재 배수지 내에 수위 계측 센서를 설치하여, 가압장의 펌프운영을 통해 배수지의 최적 수위를 관리하고 있으나, 센서의 오작동 및 통신두절 등 사고대응을 관리자 감시에 의존하고 있어, 사고의 위험을 안고 있다. 본 연구에서는 배수시설의 안정적 운영을 위하여, 배수지의 수위 변화 예측 인공지능 모델을 제안하였으며, 배수지 수위 변화 예측모델의 현장적용에 대한 안정성을 확인하기 위하여 수위 데이터의 결측 상황에 대한 시뮬레이션을 통하여, 실제 수위 변화값과 예측된 수위 변화값의 비교를 통하여 모델의 유용성을 확인하였다.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.

고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발 (Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network)

  • 서지원;김기범;김기범;구자용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측 (Prediction of water level in a tidal river using a deep-learning based LSTM model)

  • 정성호;조효섭;김정엽;이기하
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1207-1216
    • /
    • 2018
  • 본 연구는 물리적 수리 수문모형의 적용이 제한적인 감조하천에서의 수위예측을 목적으로 하고 있으며, 이를 위해 한강 잠수교를 대상으로 딥러닝 오픈소스 소프트웨어 라이브러리인 TensorFlow를 활용하여 LSTM 모형을 구성하고 2011년부터 2017년까지의 10분 단위의 잠수교 수위, 팔당댐 방류량과 한강하구 강화대교지점의 예측조위 자료를 이용하여 모형학습(2011~2016) 및 수위예측(2017)을 수행하였다. 모형 매개변수는 민감도 분석을 통해 은닉층의 개수는 6개, 학습속도는 0.01, 학습횟수는 3000번로 결정하였으며, 모형 학습 시 학습정보의 시간적 양을 결정하는 중요한 매개변수인 시퀀스길이는 1시간, 3시간, 6시간으로 변화시키며 모의하였다. 최종적으로 선행시간에 따른 모의 예측능력을 평가하기 위해 LSTM 모형의 예측 선행시간을 6개(1 ~ 24시간)로 구분하여 실측수위와 예측수위와의 비교 분석을 수행한 결과, LSTM 모형의 최적의 성능을 내는 결과는 시퀀스길이를 1시간으로 하였을 때로 분석되었으며, 특히 선행시간 1시간에 대한 예측정확도는 RMSE는 0.065 m, NSE는 0.99로 실측수위에 매우 근접한 예측 결과를 나타내었다. 또한 시퀀스길이에 상관없이 선행시간이 길어질수록 모형의 예측 정확도는 2017년 전기간에 걸쳐 평균적으로 RMSE 0.08 m에서 0.28 m로 오차가 증가하였으며, NSE는 0.99에서 0.74로 감소하였다.

딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측 (Flow rate prediction at Paldang Bridge using deep learning models)

  • 성연정;박기두;정영훈
    • 한국수자원학회논문집
    • /
    • 제55권8호
    • /
    • pp.565-575
    • /
    • 2022
  • 최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.

하천 범람 예측을 위한 인공지능 수위 예측 시스템 설계 (Design of Artificial Intelligence Water Level Prediction System for Prediction of River Flood)

  • 박세현;김현재
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.198-203
    • /
    • 2020
  • 본 논문에서는 소규모 강의 범람 예측을 위한 인공 수위 예측 시스템을 제안한다. 강의 수위 예측은 홍수 피해를 줄일 수 있는 대책이 될 수 있다. 그러나 하천 범람에 영향을 미치는 강 또는 강우의 고유 특성으로 인해 범람 모델을 구축하기가 어렵다. 일반적으로 하류 수위는 상류의 인접한 수위에 영향을 받는다. 따라서 본 연구에서는 측정 지점에서 수위를 예측하기 위해 두 개의 상류 측정 지점의 수위를 순환신경망(LSTM)을 사용하여 인공 지능 모델을 구축했다. 제안 된 인공 지능 시스템은 수위 측정기를 설계하고 Nodejs를 사용하여 서버를 구축했다. 제안 된 신경망 하드웨어 시스템은 실제 강에서 6시간마다 수위를 잘 예측함을 알 수 있었다.

인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정 (Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model)

  • 신문주;문수형;문덕철;류호윤;강경구
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.485-493
    • /
    • 2021
  • 지하수는 지표수와 함께 용수로 사용가능한 중요한 수자원이며 특히 섬 지역의 경우 전체 수자원 중 지하수의 이용 비율이 상대적으로 높기 때문에 안정적인 이용을 위해 지하수위 변동성에 대한 연구는 필수적이다. 지하수위 변동성의 예측 및 분석을 위해 인공지능 모델을 활용한 연구들이 지속적으로 증가하고 있으나 지하수위 예측결과의 적절성을 판단할 수 있는 평가기준을 제시한 연구는 충분하지 않다. 본 연구에서는 허용가능한 지하수위 예측오차의 범위를 제시하기 위해 과거 20년 동안 전 세계 다양한 지역을 대상으로 인공지능 모델을 활용하여 지하수위를 예측한 연구결과들을 종합적으로 분석하였다. 그 결과 관측지하수위의 변동성이 커질수록 인공지능 모델에 의한 지하수위 예측오차는 증가하였다. 따라서 관측지하수위 최대변동폭과 예측오차 간의 상관성과 기존 연구들에서 제시한 평가지수들을 고려하여 평가기준을 산정하였으며, 인공지능 모델에 의한 지하수위 예측결과의 적절한 평가기준은 도출된 선형회귀식에 의한 평균제곱근오차 또는 최대오차 이하이거나, NSE ≥ 0.849 또는 R2 ≥ 0.880 이다. 이 허용가능한 오차범위는 인공지능 모델을 활용한 지하수위 예측결과의 적절성 판단을 위한 참고자료로 사용할 수 있다.

전남 무안 해안 대수층에서의 지하수위 예측을 위한 자기교차회귀모형 구축 (Development of the Autoregressive and Cross-Regressive Model for Groundwater Level Prediction at Muan Coastal Aquifer in Korea)

  • 김현정;여인욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.23-30
    • /
    • 2014
  • Coastal aquifer in Muan, Jeonnam, has experienced heavy seawater intrusion caused by the extraction of a substantial amount of groundwater for the agricultural purpose throughout the year. It was observed that groundwater level dropped below sea level due to heavy pumping during a dry season, which could accelerate seawater intrusion. Therefore, water level needs to be monitored and managed to prevent further seawater intrusion. The purpose of this study is to develop the autoregressive-cross-regressive (ARCR) models that can predict the present or future groundwater level using its own previous values and pumping events. The ARCR model with pumping and water level data of the proceeding five hours (i.e., the model order of five) predicted groundwater level better than that of the model orders of ten and twenty. This was contrary to expectation that higher orders do increase the coefficient of determination ($R^2$) as a measure of the model's goodness. It was found that the ARCR model with order five was found to make a good prediction of next 48 hour groundwater levels after the start of pumping with $R^2$ higher than 0.9.